Skip to main content
Log in

Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The phenolic oxidative coupling protein (Hyp-1) with proposed activity in the biosynthesis of hypericin in Hypericum perforatum shares about 50 % sequence similarity with Bet.v.1-like/PR-10 proteins. In our previous study, we showed that this protein is not a limiting factor in hypericin biosynthesis. To ascertain the role of Hyp-1 in defense mechanisms, we have analyzed some structural features of the hyp-1 gene in 14 Hypericum species with different abilities to synthesise hypericin. We show that the hyp-1 gene possesses characteristics typical for genes encoding plant PR-10 proteins. The coding sequence of the hyp-1 gene is interrupted by a single 86- to 125-bp intron localised strictly in codon 62, which is a typical feature of the dicot PR-10 subfamily. The localisation of the intron is conserved in all 14 tested Hypericum species indicating a common evolutionary history with genes encoding PR-10 proteins. In addition, we report that the hyp-1 gene exhibits a similar response to stress conditions as the PR-10 proteins encoding genes. Following either wounding or infection by Agrobacterium tumefaciens, all analysed Hypericum species exhibited rapid and significant upregulation of hyp-1 gene expression; this was particularly observed in hypericin-producing species. On the other hand, in the presence of high levels of abscisic acid, different levels of gene expression were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

Hyp-1:

Phenolic-coupling protein

PR-10:

Pathogenesis related class-10 proteins

References

  • Ames BD, Korman TP, Zhang W, Smith P, Vu T, Tang Y, Tsai SC (2008) Crystal structure and functional analysis of tetracenomycin ARO/CYC: implications for cyclization specificity of aromatic polyketides. Proc Natl Acad Sci USA 105:5349–5354

    Article  PubMed  Google Scholar 

  • Bahramnejad B, Goodwin PH, Zhang J, Atnaseo C, Erickson LR (2010) A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules. Plant Cell Rep 29:1235–1250

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s Wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422

    Article  PubMed  CAS  Google Scholar 

  • Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol Biochem 39:1075–1081

    Article  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Dai XF (2010) Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta 231:861–873

    Article  PubMed  CAS  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult 106:279–288

    Article  CAS  Google Scholar 

  • Fernandes H, Pasternak O, Bujacz G, Bujacz A, Sikorski MM, Jaskolski M (2008) Lupinus luteus pathogenesis-related protein as a reservoir for cytokinin. J Mol Biol 378:1040–1051

    Article  PubMed  CAS  Google Scholar 

  • Fernandes H, Bujacz A, Bujacz G, Jelen F, Jasinski M, Kachlicki P, Otlewski J, Sikorski MM, Jaskolski M (2009) Cytokinin-induced structural adaptability of a Lupinus luteus PR-10 protein. FEBS J 276:1596–1609

    Article  PubMed  CAS  Google Scholar 

  • Fernandes H, Michalska K, Sikorski M, Jaskolski M (2013) Structural and functional aspects of PR-10 proteins. FEBS J 280:1169–1199

    Article  PubMed  CAS  Google Scholar 

  • Franklin G, Conceição LFR, Kombrink E, Dias ACP (2008) Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta 227:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Franklin G, Conceição LFR, Kombrink E, Dias ACP (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70:60–68

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Y, Nagata R, Fukasawa H, Yano K, Azuma M, Iida A, Sugimoto S, Shudo K, Hashimoto Y (1998) Purification and cDNA cloning of cytokinin-specific binding protein from mung bean (Vigna radiata). Eur J Biochem 258:794–802

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean roots. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gao SZ, van de Weg WE, Schaart JG, Schouten HJ, Tran DH, Kodde LP, van der Meer IM, van der Geest AHM, Kodde J, Breiteneder H, Hoffmann-Sommergruber K, Bosch D, Gilissen LJWJ (2005) Genomic cloning and linkage mapping of the Mal d 1 (PR-10) gene family in apple (Malus domestica). Theor Appl Genet 111:171–183

    Article  PubMed  CAS  Google Scholar 

  • Graham MY, Weidner J, Wheeler K, Pelow MJ, Graham TL (2003) Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. Physiol Mol Plant Pathol 63:141–149

    Article  CAS  Google Scholar 

  • Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, Koshiba T (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Sommergruber K, Vanek-Krebitz M, Radauer C, Wen J, Ferreira F, Scheiner O, Breiteneder H (1997) Genomic characterization of members of the Bet v 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene 197:91–100

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L, Pirtilla AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberrry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–204

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L, Koskimäki JJ, Riihinen KR, Tolvanen A, Hohtola A (2008) Effect of wounding on chalcone synthase and pathogenesis related PR-10 gene expression and content of phenolic compounds in bilberry leaves. Biol Plant 52:391–395

    Article  CAS  Google Scholar 

  • Jain S, Kumar D, Jain M, Chaudhary P, Deswal R, Sarin NR (2012) Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell Tiss Organ Cult 109:9–31

    Article  Google Scholar 

  • Jellouli N, Jouira HB, Daldoul S, Chenennaoui S, Ghorbel A, Salem AB, Gargouri A (2010) Proteomic and transcriptomic analysis of grapevine PR10 expression during salt stress and functional characterization in yeast. Plant Mol Biol Rep 28:1–8

    Article  CAS  Google Scholar 

  • Koistinen KM, Soininen P, Venäläinen PA, Häyrinen Y, Laatikainen R, Peräkylä M, Tervahauta AI, Kärenlampi SO (2005) Birch PR-10c interacts with several biologically important ligands. Phytochemistry 66:2524–2553

    Article  PubMed  CAS  Google Scholar 

  • Košuth J, Katkovčinová Z, Olexová P, Čellárová E (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217

    Article  PubMed  Google Scholar 

  • Košuth J, Smelcerovic A, Borsch T, Zuehlke S, Karppinen K, Spiteller M, Hohtola A, Čellárová E (2011) The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Funct Plant Biol 38:35–43

    Article  Google Scholar 

  • Kusari S, Zühlke S, Košuth J, Čellárová E, Spiteller M (2009) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Products 72:1825–1835

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lebel S, Schellenbaum P, Walter B, Maillot P (2010) Characterisation of the Vitis vinifera PR10 multigene family. BMC Plant Biol 10:184–196

    Article  PubMed  Google Scholar 

  • Lee OR, Pulla RK, Kim YJ, Balusamy SRD, Yang DC (2012) Expression and stress tolerance of PR10 genes from Panax ginseng C.A. Meyer. Mol Biol Rep 39:2365–2374

    Article  PubMed  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Marković-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol 325:123–133

    Article  PubMed  Google Scholar 

  • Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    Article  PubMed  CAS  Google Scholar 

  • Michalska K, Fernandes H, Sikorski M, Jaskolski M (2010) Crystal structure of Hyp-1, a St. John’s Wort protein implicated in the biosynthesis of hypericin. J Struct Biol 169:161–171

    Article  PubMed  CAS  Google Scholar 

  • Nürk NM, Madriñán S, Carine MA, Chase MW, Blattner FR (2013) Molecular phylogenetics and morphological evolution of St. John’s wort (Hypericum; Hypericaceae). Mol Phylogenet Evol 66:1–16

    Article  PubMed  Google Scholar 

  • Pasternak O, Bujacz GD, Fujimoto Y, Hashimoto Y, Jelen F, Otlewski J, Sikorski MM, Jaskolski M (2006) Crystal structure of Vigna radiata cytokinin-specific binding protein in complex with zeatin. Plant Cell 18:2622–2634

    Article  PubMed  Google Scholar 

  • Pinto MP, Ribeiro A, Regalado AP, Rodrigues-Pousada C, Ricardo CPP (2005) Expression of Lupinus albus PR-10 proteins during root and leaf development. Biol Plant 49:187–193

    Article  CAS  Google Scholar 

  • Poupard P, Strullu DG, Simoneau P (1998) Two members of the Betv 1 gene family encoding birch pathogenesis-related proteins display different patterns of root expression and wound-inducibility. Aust J Plant Physiol 25:459–464

    Article  CAS  Google Scholar 

  • Pulla RK, Lee OR, In JG, Kim YJ, Senthil K, Yang DC (2010) Expression and functional characterization of pathogenesis-related protein family 10 gene, PgPR10-2, from Panax ginseng C.A. Meyer. Physiol Mol Plant Pathol 74:323–329

    Article  CAS  Google Scholar 

  • Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286–304

    Article  PubMed  Google Scholar 

  • Samanani N, Liscombe DK, Facchini PJ (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J 40:303–313

    Article  Google Scholar 

  • Sikorski MM, Biesiadka J, Kasperska AE, Kopcińska J, Lotocka B, Golinowski W, Legocki AB (1999) Expression of genes encoding PR10 class pathogenesis-related proteins is inhibited in yellow lupine root nodules. Plant Sci 149:125–137

    Article  CAS  Google Scholar 

  • Sirvent TM, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    CAS  Google Scholar 

  • Sirvent TM, Krasnoff SB, Gibson DM (2003) Induction of hypericins and hyperforins in Hypericum perforatum in response to damage by herbivores. J Chem Ecol 29:2667–2681

    Article  PubMed  CAS  Google Scholar 

  • Skyba M, Petijová L, Košuth J, Koleva DP, Ganeva TG, Kapchina-Toteva VM, Čellárová E (2012) Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment. J Plant Physiol 169:955–964

    Article  PubMed  CAS  Google Scholar 

  • Tolonen A, Hohtola A, Jalonen J (2003) Fast high-performance liquid chromatographic analysis of naphthodianthrones and phloroglucinols from Hypericum perforatum extracts. Phytochem Anal 14:306–309

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Liu J-W, Wünn J, Hess D (1996) Bean ribonuclease-like pathogenesis-related protein genes (Ypr10) display complex patterns of developmental, dark-induced and exogenous-stimulus-dependent expression. Eur J Biochem 239:281–293

    Article  PubMed  CAS  Google Scholar 

  • Wang C-S, Huang J-C, Hu J-H (1999) Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol Biol 40:807–814

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Yu H, He M, Yang Y, Wang Y (2010) Isolation and expression analysis of a novel pathogenesis-related protein 10 gene from Chinese wild Vitis pseudoreticulata induced by Uncinula necator. Biologia 65:653–659

    Article  CAS  Google Scholar 

  • Xu M, Sheng J, Wang H, Dong J (2011) Involvement of NADPH oxidase-mediated H2O2 signaling in PB90-induced hypericin accumulation in Hypericum perforatum cells. Plant Cell Tiss Organ Cult 105:47–53

    Article  CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:93–804

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contracts No 0040-10 and LPP-0021-09 and by the Scientific Grant Agency of the Slovak Republic 1/142/11 and by Structural Funds of EU under contract No 007/20092.1/OPVaV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Čellárová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Košuth, J., Hrehorová, D., Jaskolski, M. et al. Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis. Plant Cell Tiss Organ Cult 114, 207–216 (2013). https://doi.org/10.1007/s11240-013-0316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0316-0

Keywords

Navigation