Skip to main content
Log in

Levels of phytoene and β-carotene in transgenic honeydew melon (Cucumis melo L. inodorus)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Using a previously reported optimized Agrobacterium tumefaciens-mediated transformation protocol, a watermelon phytoene synthase-C (PSY-C) gene was introduced into the elite honeydew breeding line ‘150’. Putative transformants were selected on kanamycin-containing medium (from 150 to 50 mg·l−1) and presence of the transgene was confirmed using polymerase chain reaction (PCR). Moreover, Southern blot analysis confirmed integration of the transgene and revealed presence of one to two copies of the PSY-C transgene in the different transgenic lines. In addition, reverse transcription (RT)-PCR analysis revealed transcript levels of the transgene in different tissues of these transgenic lines. Using flow cytometric analysis, it was found that all T0 transgenic plants were tetraploid. Moreover, altered phenotypes (color change) were observed for rind tissues of transgenic lines. Based on high performance liquid chromatography (HPLC), β-carotene content and phytoene accumulation in fruit of transgenic lines were 32-fold and 11 μg·g−1 FW higher than the levels found in the control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

HPLC:

High performance liquid chromatography

PG:

Polygalacturonase

PSY:

Phytoene synthase

T0 :

Regenerated transgenic plant from the original inoculated explant

T1 :

The progeny of the original T0 transgenic plants

References

  • Aggelis A, John I, Grierson D (1997) Analysis of physiological and molecular changes in melon (Cucumis melo L.) varieties with different rates of ripening. J Exp Bot 48:769–778

    Article  CAS  Google Scholar 

  • Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  PubMed  CAS  Google Scholar 

  • Ayub R, Guis M, Amor MB, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    Article  PubMed  CAS  Google Scholar 

  • Bang H, Kim S, Leskovar DI, Davis AR, King SR (2006) Duplication of the phytoene synthase gene in the carotenoid biosynthetic pathway of watermelon. HortScience 41:1007 (abstract)

    Google Scholar 

  • Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, Huges S, Morris PC, Grierson D, Schuch W (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol Biol 11:651–662

    Article  CAS  Google Scholar 

  • Clendennen S, Kellogg JA, Wolf KA, Matsumura W, Peters S, Vanwinkle JE, Copes B, Pieper M, Kramer MG (1999) Genetic engineering of cantaloupe to reduce ethylene biosynthesis and control ripening. In: Kanellis A, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene, vol II. Kluwer, Dordrecht, pp 371–379

    Chapter  Google Scholar 

  • Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic-virus in squash and cantaloupe. Plant Dis 79:1107–1109

    Article  CAS  Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis. Annu Rev Plant Physio Plant Mol Biol 49:557–583

    Article  CAS  Google Scholar 

  • Curuk S, Ananthakrishnan G, Singer S, Xia X, Elman C, Nestel D, Cetiner S, Gaba V (2003) Regeneration in vitro from the hypocotyl of Cucumis species produces almost exclusively diploid shoots, and does not require light. HortScience 38:105–109

    Google Scholar 

  • Dhooghe E, van Laere K, Eeckhaut T, Leus L, van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104:359–373

    Article  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2:e350

    Article  PubMed  Google Scholar 

  • Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 56:81–89

    PubMed  CAS  Google Scholar 

  • Ezura H, Hiroshi A, Keiko Y, Oosawa K (1992) Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomemon, in tissue cultures of melon (Cucumis melo L.). Plant Sci 85:209–213

    Article  Google Scholar 

  • Ezura H, Hitomi A, Higashi K, Sato T, Kubota M (1997a) Introduction of ACC synthase antisense gene to muskmelon (Cucumis melo L. var. reticulatus). In: Abak K, Büyükalaca S (eds) First international symposium on cucurbits, Adana, Turkey, Abstract

  • Ezura H, Kikuta I, Oosawa K (1997b) Long-term ploidy stability of shoot primordium cultures and produced plants of melon. Plant Cell Tiss Organ Cult 48:31–35

    Article  CAS  Google Scholar 

  • Fan J, He Q, Wang X, Yu X (2007) Antisense acid invertase (anti-MAI1) gene alters soluble sugar composition and size in transgenic muskmelon fruits. Acta Hort Sinica 34:677–682

    CAS  Google Scholar 

  • Fang G, Grumet R (1993) Genetic-engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Mol Plant-Microbe Interact 6:358–367

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Römer S, Kiano JW, Shipton CA, Mills PB, Drake R, Schuch W, Bramley PM (2001) Elevation of carotenoids in tomato by genetic manipulation. J Sci Food and Agri 81:822–827

    Article  CAS  Google Scholar 

  • Fraser PD, Römer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092–1097

    Article  PubMed  CAS  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  • Fuchs M, McFerson JR, Tricoli DM, McMaster JR, Deng RZ, Boeshore ML, Reynolds JF, Russell PF, Quemada HD, Gonsalves D (1997) Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol Breed 3:279–290

    Article  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses (Poaceae). Plant Physiol 135:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling KS, Namba S, Chee P, Slightom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Amer Soc Hort Sci 119:345–355

    CAS  Google Scholar 

  • Guis M, Botondi R, BenAmor M, Ayub R, Bouzayen M, Pech JC, Latche A (1997) Ripening-associated biochemical traits of cantaloupe charentais melons expressing an antisense ACC oxidase transgene. J Am Soc Horticult Sci 122:748–751

    CAS  Google Scholar 

  • Guis M, Amor MB, Latché A, Pech JC, Roustan JP (2000) A reliable system for the transformation of cantaloupe charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Scientia Hort 84:91–99

    Article  CAS  Google Scholar 

  • Hao J, Niu Y, Yang B, Gao F, Zhang L, Wang J, Hasi A (2011) Transformation of a marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube pathway. Biotechnol Lett 33:55–61

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plant. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Karvouni Z, John I, Taylor JE, Watson CF, Turner AJ, Grierson D (1995) Isolation and characterization of a melon cDNA clone encoding phytoene synthase. Plant Mol Bio 27:1153–1162

    Article  CAS  Google Scholar 

  • Lau JM, Cooper NG, Robinson DL, Korban SS (2009) Sequence and in silico characterization of the tomato polygalacturonase (PG) promoter and terminator regions. Plant Mol Biol Rep 27:250–256

    Article  CAS  Google Scholar 

  • Lema-Rumińska J (2011) Flow cytometric analysis of somatic embryos, shoots, and calli of the cactus Copiapoa tenuissima Ritt. forma monstruosa. Plant Cell Tiss Organ Cult 106:531–535

    Article  Google Scholar 

  • Li Z, Yao L, Yang Y, Li A (2006) Transgenic approach to improve quality traits of melon fruit. Sci Hort 108:268–277

    Article  CAS  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:333–1345

    Article  Google Scholar 

  • Montgomery J, Pollard V, Deikman J, Fischer RL (1993) Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp. Plant Cell 5:1049–1062

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nicholass FJ, Smith CJS, Schuch W, Bird CR, Grierson D (1995) High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plant Mol Biol 28:423–435

    Article  PubMed  CAS  Google Scholar 

  • Nuňez-Palenius HG, Cantliffe DJ, Huber DJ, Ciardi J, Klee HJ (2006) Transformation of a muskmelon ‘Galia’ hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an antisense ACC oxidase gene. Plant Cell Rep 25:198–205

    Article  PubMed  Google Scholar 

  • Nuňez-Palenius HG, Grumet R, Lester G, Cantliffe D (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    Article  PubMed  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tiss Organ Cult 104:329–341

    Article  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Coku A, Inoue K, Tian L (2011) Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.). Planta 234:737–748

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Bang H, Curtis IS, Gould G, Patil BS, Crosby KM (2012) Agrobacterium-mediated transformation and shoot regeneration in elite breeding lines of western shipper cantaloupe and honeydew melons (Cucumis melo L.). Plant Cell Tiss Organ Cult 108:147–158

    Article  CAS  Google Scholar 

  • Shellie KC (2001) Reduced ethylene concentration and postharvest quality of transgenic netted melon (Cucumis melo L.) expressing S-adenosylmethionine hydrolase. HortScience 36:467

    Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  PubMed  CAS  Google Scholar 

  • Silva JA, da Costa TS, Lucchetta L, Marini LJ, Zanuzo MR, Nora L, Nora FR, Twyman RM, Rombaldi CV (2004) Characterization of ripening behavior in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene from apple. Postharvest Biol Technol 32:263–268

    Article  CAS  Google Scholar 

  • Skroch PW, Nienhuis J (1995) Qualitative and quantitative characterization of RAPD variation among snap bean genotypes. Theor Appl Genet 91:1078–1085

    CAS  Google Scholar 

  • Tian H, Ma L, Zhao C, Hao H, Gong B, Yu X, Wang X (2010) Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochem and Biophys Res Commun 393:365–370

    Article  CAS  Google Scholar 

  • Wu H, Yu T, Raja JAJ, Wang H, Yeh SD (2009) Generation of transgenic oriental melon resistant to zucchini yellow mosaic virus by an improved cotyledon-cutting method. Plant Cell Rep 28:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Yalçın-Mendi NY, Ipek M, Serbest-Kobaner S, Curuk S, Aka Kacar Y, Cetiner S, Gaba V, Grumet R (2004) Agrobacterium-mediated transformation of Kirkagac 637 a recalcitrant melon (Cucumis melo) cultivar with ZYMV coat protein encoding gene. Eur J Hort Sci 69:258–262

    Google Scholar 

  • Yalçın-Mendi NY, Sari N, Akyildiz A, Solmaz I, Ünek C, Ozkaya O, Serçe S (2010) Determination of gene escape and fruit quality characteristics in transgenic melon. Turk J Agric Sci 34:135–143

    Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Sci 287:303–305

    Article  CAS  Google Scholar 

  • Yoshioka K, Hanada K, Nakazaki Y, Minobe Y, Yakuwa T, Oosawa K (1992) Successful transfer of the cucumber mosaic virus coat protein gene to Cucumis melo L. Jpn J Breed 42:277–285

    Google Scholar 

Download references

Acknowledgments

This research was supported by the USDA-CSREES (2008-34402-19195, 2009-34402-19831) and USDA-NIFA (2010-34402-20875), “Designing Foods for Health” grants, through the Vegetable and Fruit Improvement Center, Texas AgriLife Research. We wish to thank Drs. Jim Giovannoni and Li Li at Cornell University for providing binary vectors and technical advice. We also appreciate Dr. Yong Hun Chi’s help in providing E. coli for gene construction and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Crosby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Bang, H., Lee, E.J. et al. Levels of phytoene and β-carotene in transgenic honeydew melon (Cucumis melo L. inodorus). Plant Cell Tiss Organ Cult 113, 291–301 (2013). https://doi.org/10.1007/s11240-012-0269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0269-8

Keywords

Navigation