Skip to main content

Silencing of the glutathione biosynthetic pathway inhibits somatic embryogenesis in wheat

Abstract

Somatic embryogenesis in scutella of wheat (Triticum aestivum L.) is a well documented phenomenon and it has been shown through transcriptome analysis that genes involved in antioxidant responses, particularly in glutathione (GSH) biosynthesis, participate in the process. Thus, we investigated the influence of post-transcriptional silencing (PTGS) of the glutathione biosynthesis genes GSH1 and GSH2 on somatic embryogenesis in wheat. We found that PTGS of either of the target genes drastically inhibits callus regeneration and overall efficiency of transformation, in a similar manner as the GSH biosynthetic inhibitor buthionine sulfoximine. Supplementing the medium with glutathione did not overcome the observed low efficiency of wheat transformation. Furthermore, of the small number of obtained transformants, none exhibited altered GSH1 and GSH2 levels of transcription. Thus, it is concluded that GSH is essential for somatic embryogenesis and, as a consequence, it is difficult to regenerate wheat plants with silenced GSH1 and GSH2 genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

PTGS:

post-transcriptional gene silencing

GSH:

Glutathione

BSO:

Buthionine sulfoximine

GST:

Glutathione S-transferase

MS:

Murashige and Skoog

2, 4-D:

2,4-Dichlorophenoxyacetic acid

PPT:

DL-Phosphinothricin

PCR:

Polymerase Chain Reaction

References

  1. Ahloowalia BS (1982) Plant regeneration from callus culture in wheat. Crop Sci 22:405–410. doi:10.2135/cropsci1982.0011183X002200020047x

    Article  Google Scholar 

  2. Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular A, Leyland N, Mejia-Carranza J, Reynolds H (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462. doi:10.1105/tpc.104.022608

    PubMed  Article  CAS  Google Scholar 

  3. Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pti15955. Plant Mol Biol 2:335–350. doi:10.1007/BF01578595

    Article  CAS  Google Scholar 

  4. Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391. doi:10.1105/tpc.109.071225

    Google Scholar 

  5. Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455. doi:10.1104/pp.106.077982

    PubMed  Article  CAS  Google Scholar 

  6. Christensen A, Sharrock R, Quail P (1992) Maize Poly-Ubiquitin Genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    PubMed  Article  CAS  Google Scholar 

  7. Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78. doi:10.1046/j.1365-313x.1998.00262.x

    PubMed  Article  CAS  Google Scholar 

  8. Dalakouras A, Tzanopoulou M, Tsagris M, Wassenegger M, Kalantidis K (2011) Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Res 20:293–304

    Google Scholar 

  9. Davletova S, Mészáros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D, Deák M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221. doi:10.1093/jexbot/52.355.215

    PubMed  Article  CAS  Google Scholar 

  10. Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–22. doi:10.1007/BF02712670

    Article  CAS  Google Scholar 

  11. Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman H (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1:561–573

    PubMed  CAS  Google Scholar 

  12. Diaz Vivancos P, Dong Y, Ziegler K, Markovic J, Pallardó F, Pellny T, Verrier P, Foyer C (2010a) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838. doi:10.1111/j.1365-313X.2010.04371.x

    Article  Google Scholar 

  13. Diaz Vivancos P, Wolff T, Markovic J, Pallardó F, Foyer C (2010b) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–178. doi:10.1042/BJ20100409

    PubMed  Article  CAS  Google Scholar 

  14. Dron M, Clouse S, Dixon R, Lawton M, Lamb C (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc. Natl. Acad. Sci. USA 85:6738–6742

    PubMed  Article  CAS  Google Scholar 

  15. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18. doi:10.1104/pp.110.167569

    PubMed  Article  CAS  Google Scholar 

  16. Galland R, Randoux B, Vasseur J, Hilbert J (2001) A glutathione s-transferase cDNA identified by Mrna diferential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216. doi:10.1016/S0167-4781(01)00314-1

    PubMed  Article  CAS  Google Scholar 

  17. He DG, Yang YM, Bertram J, Scott KJ (1990) The histological development of the regenerative tissue derived from cultured immature embryos of wheat (Triticum aestivum L.). Plant Sci 68:103–111. doi:10.1016/0168-9452(90)90158-K

    Article  Google Scholar 

  18. Hiratake J, Irie T, Tokutake N, Oda J (2002) Recognition of a cysteine sustrate by E. coli γ-glutamylcysteine synthetase probed by sulfoximine-based transition-state analogue inhibitors. Biosci Biotechnol Biochem 66:1500–1514. doi:10.1271/bbb.66.1500

    PubMed  Article  CAS  Google Scholar 

  19. Howden R, Andersen C, Goldsbrough P, Cobbett C (1995) A Cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073. doi:10.1104/pp.107.4.1067

    PubMed  Article  CAS  Google Scholar 

  20. Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557. doi:10.1007/s002990050772

    Article  CAS  Google Scholar 

  21. Koprivova A, Mugford ST, Kopriva S (2010) Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29:1157–1167. doi:10.1007/s00299-010-0902-0

    PubMed  Article  CAS  Google Scholar 

  22. McEllroy D, Rothenberg M, Reece K, Wu R (1990) Characterization of the rice (Oryza sativa) Actin gene family. Plant Mol Biol 15:257–268. doi:10.1007/BF00036912

    Article  Google Scholar 

  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  24. Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Org Cult 90:1–8. doi:10.1007/s11240-007-9249-9

    Article  CAS  Google Scholar 

  25. Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5:285–297. doi:10.1046/j.1365-313X.1994.05020285.x

    Article  CAS  Google Scholar 

  26. Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer C (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484. doi:10.1111/j.1365-3040.2011.02400.x

    PubMed  Article  CAS  Google Scholar 

  27. Ozias-akins P, Vasil I (1982) Plant regeneration from cultured immature embryos and inflorescences Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110:95–105. doi:10.1007/BF01281535

    Article  Google Scholar 

  28. Pasternak T, Potters G, Caubergs R, Jansen M (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001. doi:10.1093/jxb/eri196

    PubMed  Article  CAS  Google Scholar 

  29. Pellegrineschi A, Fennell S, McLean S, Brito RM, Velázquez L, Salgado M, Olivares JJ, Hernandez R, Hoisinngton D (1999) Wheat transformation in CIMMYT: a description of a service laboratory. In Vitro Cell Dev Biol 35:43–49. doi:10.1007/s11626-999-0042-4

    Article  Google Scholar 

  30. Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430. doi:10.1139/g01-154

    PubMed  Article  CAS  Google Scholar 

  31. Pfaffl M, Horgan G, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi:10.1093/nar/30.9.e36

    PubMed  Article  Google Scholar 

  32. Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865. doi:10.1105/tpc.107.050849

    PubMed  Article  CAS  Google Scholar 

  33. Rosche E, Chitty J, Westhoff P, Taylor WC (1998) Analysis of promoter activity for the gene encoding pyruvate orthophosphate dikinase in stably transformed C4 Flaveria species. Plant Physiol 117:821–829. doi:10.1104/pp.117.3.821

    PubMed  Article  CAS  Google Scholar 

  34. Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Ann Rev Plant Biol 59:143–166

    Article  CAS  Google Scholar 

  35. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    PubMed  Article  CAS  Google Scholar 

  36. Sanità di Toppi L, Lambardi M, Pazzagli L, Cappugi G, Durante M, Gabbrielli R (1998) Response to cadmium in carrot in vitro plants and cell suspension cultures. Plant Sci 137:119–129. doi:10.1016/S0168-9452(98)00099-5

    Article  Google Scholar 

  37. Singla B, Tyagi AK, Khurana JP, Khurana P (2007) Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat. Plant Mol Biol 65:677–692. doi:10.1007/s11103-007-9234-z

    PubMed  Article  CAS  Google Scholar 

  38. Stephenson T, McIntyre C, Collet C, Xue G (2007) Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol 65:77–92. doi:10.1007/s11103-007-9200-9

    PubMed  Article  CAS  Google Scholar 

  39. Sun L, Wu Y, Su S, Liu H, Yang G, Li S, Shan X, Yuan Y (2012) Differential gene expression during somatic embryogenesis in the maize (Zea mays L.) inbred line H99. Plant Cell Tiss Org Cult 109:271–286. doi:10.1007/s11240-011-0093-6

    Article  CAS  Google Scholar 

  40. Thompson C, Movva N, Tizard R, Crameri R, Davies J, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed  CAS  Google Scholar 

  41. Tyburski J, Tretyn A (2010) Glutathione and glutathione disulfide affect adventitious root formation and growth in tomato seedling cuttings. Acta Physiol Plant 32:411–417. doi:10.1007/s11738-009-0418-9

    Article  CAS  Google Scholar 

  42. Vain P, Keen N, Murillo J, Rathus C, Nemes C, Finer J (1993) Development of the particle inflow gun. Plant Cell Tiss Org Cult 33:237–246. doi:10.1007/BF02319007

    Article  CAS  Google Scholar 

  43. Vernoux T, Wilson R, Seeley K, Reichheld J, Muroy S, Brown S, Maughan S, Cobbett C, Van Montagu M, Inzé D (2000) The root meristemless/cadmium sensitive gene defines a glutathione: dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110. doi:10.1105/tpc.12.1.97

    PubMed  CAS  Google Scholar 

  44. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590. doi:10.1046/j.1365-313X.2001.01105.x

    PubMed  Article  CAS  Google Scholar 

  45. Xiang C, Oliver D (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550. doi:10.1105/tpc.10.9.1539

    PubMed  CAS  Google Scholar 

  46. Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574. doi:10.1104/pp.126.2.564

    PubMed  Article  CAS  Google Scholar 

  47. Yanagida M, Mino M, Iwabuchi M, Ogawa K (2004) Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant Cell Physiol 45:129–137. doi:10.1093/pcp/pch030

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. C. Foyer for the critical reading of this manuscript. This work was funded by project AEGR 3425 from Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Bossio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bossio, E., Díaz Paleo, A., del Vas, M. et al. Silencing of the glutathione biosynthetic pathway inhibits somatic embryogenesis in wheat. Plant Cell Tiss Organ Cult 112, 239–248 (2013). https://doi.org/10.1007/s11240-012-0228-4

Download citation

Keywords

  • Antioxidant response
  • Glutathione biosynthetic pathway
  • Post transcriptional gene silencing
  • Somatic embryogenesis
  • ROS mediators of somatic embryogenesis
  • Wheat