Skip to main content
Log in

Comparison of procedures for DNA coating of micro-carriers in the transient and stable biolistic transformation of sugarcane

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Biolistic gene transfer is one of the preferred methods for both transient gene expression studies and stable genetic transformation for improvement of crops including sugarcane. In preparation for bombardment, DNA is precipitated onto micro-particles in the presence of a cationic polyamine and buffer. Three different DNA coating procedures were compared for biolistic transformation of sugarcane using linear expression cassettes: spermidine (free base), protamine sulfate, and the Seashell DNAdel™ Gold Carrier with proprietary precipitation buffer from Seashell Technology. All three DNA coating procedures produced transient and stable sugarcane transformation events in multiple experiments. Spermidine resulted in three-fold and 2.65-fold higher transient GUS expression than protamine and Seashell DNAdel™, respectively when averaged over 10 coating reactions per treatment. However, no significant difference in stable genetic transformation was found between the three DNA coating procedures. This study determined that spermidine-, protamine-, and Seashell DNAdel™ Gold Carrier-mediated DNA coating can be equally effective for biolistic transformation of sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Allen GC, Hall GE, Childs LC, Weissinger AK, Spiker S, Thompson WF (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5:603–613

    PubMed  CAS  Google Scholar 

  • Altpeter F, Sandhu S (2009) Genetic transformation—biolistics. In: Davey M, Anthony Pe (eds) Plant cell culture: methods express. Scion Publishing Ltd, Oxfordshire, UK, pp 217–240

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:277

    Article  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Brune B, Hartzell P, Nicotera P, Orrenius S (1991) Spermine prevents endonuclease activation and apoptosis in thymocytes. Exp Cell Res 195:323–329

    Article  PubMed  CAS  Google Scholar 

  • Chengalrayan K, Gallo-Meagher M (2001) Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell Dev Biol Plant 37:434–439

    CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    PubMed  CAS  Google Scholar 

  • Dixon L, Nyffenegger T, Delley G, Martinezizquierdo J, Hohn T (1986) Evidence for replicative recombination in cauliflower mosaic virus. Virology 150:463–468

    Article  PubMed  CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plantcells. Plant Cell Rep 11:323–328

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  PubMed  CAS  Google Scholar 

  • Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kim J, Gallo M, Altpeter F (2012) Analysis of transgene integration and expression following biolistic transfer of different quantities of minimal expression cassette into sugarcane (Saccharum spp. hybrids). Plant Cell Tiss Organ Cult 108:297–302

    Article  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Lowe BA, Prakash NS, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840

    Article  PubMed  CAS  Google Scholar 

  • Makita N, Yoshikawa Y, Takenaka Y, Sakaue T, Suzuki M, Watanabe C, Kanai T, Kanbe T, Imanaka T, Yoshikawa K (2011) Salt has a biphasic effect on the higher-order structure of a DNA-protamine complex. J Phys Chem B 115:4453–4459

    Article  PubMed  CAS  Google Scholar 

  • Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging (Albany NY) 3:716–732

  • Perl A, Kless H, Blumenthal A, Galili G, Galun E (1992) Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. Mol Gen Genet 235:279–284

    Article  PubMed  CAS  Google Scholar 

  • Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep 19(2):118–127

    Article  CAS  Google Scholar 

  • Razin S, Rozansky R (1959) Mechanism of the antibacterial action of spermine. Arch Biochem Biophys 81:36–54

    Article  PubMed  CAS  Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organisation in potato after particle bombardment-mediated (co-)transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  PubMed  CAS  Google Scholar 

  • Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge). Plant Cell Rep 27:1755–1765

    Article  PubMed  CAS  Google Scholar 

  • Sanford J, Smith F, Russell J (1993) Optimizing the biolistic process for different biological applications. Method Enzymol 217:483–509

    Article  CAS  Google Scholar 

  • SAS institute (2009) SAS/STAT guide for personal computers, version 9.2. SAS Institute, Cary

    Google Scholar 

  • Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28:213–221

    Article  PubMed  CAS  Google Scholar 

  • Tabor H (1962) The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry 1:496–501

    Article  PubMed  CAS  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977

    Article  PubMed  CAS  Google Scholar 

  • Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen AH, Quail PH, Uchimiya H (1992) Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol 100:1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Cotten M, Foisner R, Birnstiel ML (1991) Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc Natl Acad Sci USA 88:4255–4259

    Article  PubMed  CAS  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  PubMed  CAS  Google Scholar 

  • Wu LY, Nandi S, Chen LF, Rodriguez RL, Huang N (2002) Expression and inheritance of nine transgenes in rice. Transgenic Res 11:533–541

    Article  PubMed  CAS  Google Scholar 

  • Zlatanova J, Leuba SH, van Holde K (1998) Chromatin fiber structure: morphology, molecular determinants, structural transitions. Biophys J 74:2554–2566

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Jim Glass, Seashell Biotechnology LLC, La Jolla CA for providing Seashell DNAdel™ Gold Carrier, Dr. Max Teplitski for access to the VICTOR™ X3 Multilabel Plate Reader and Jeff Seib for training Yuan Xiong in the safe handling of radioisotopes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Jung, J., Zeng, Q. et al. Comparison of procedures for DNA coating of micro-carriers in the transient and stable biolistic transformation of sugarcane. Plant Cell Tiss Organ Cult 112, 95–99 (2013). https://doi.org/10.1007/s11240-012-0208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0208-8

Keywords

Navigation