Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 112, Issue 1, pp 19–31 | Cite as

Overexpression of a poplar two-pore K+ channel enhances salinity tolerance in tobacco cells

  • Feifei Wang
  • Shurong Deng
  • Mingquan Ding
  • Jian Sun
  • Meijuan Wang
  • Huipeng Zhu
  • Yansha Han
  • Zedan Shen
  • Xiaoshu Jing
  • Fan Zhang
  • Yue Hu
  • Xin Shen
  • Shaoliang Chen
Original Paper

Abstract

Populus euphratica is a plant model intensively studied for elucidating physiological and molecular mechanisms of salt tolerance in woody species. Several studies have shown that vacuolar potassium (K+) ion channels of the two-pore K+ (TPK) family play an important role in maintaining K+ homeostasis. Here, we cloned a putative TPK channel gene from P. euphratica, termed PeTPK. Sequence analysis of PeTPK1 identified the universal K-channel-specific pore signature, TXGYGD. Over-expression of PeTPK1 in tobacco BY-2 cells improved salt tolerance, but did not enhance tolerance to hyperosmotic stress caused by mannitol (200–600 mM). After 3 weeks of NaCl stress (100 and 150 mM), PeTPK1-transgenic cells had higher fresh and dry weights than wild-type cells. Salt treatment caused significantly higher Na+ accumulation and K+ loss in wild-type cells compared to transgenic cells. During short-term salt stress (100 mM NaCl, 24-h), PeTPK1-transgenic cells showed higher cell viability and reduced membrane permeabilization compared to wild-type cells. Scanning ion-selective electrode data revealed that salt-shock elicited a significantly higher transient K+ efflux from PeTPK1-transgenic callus cells and protoplasts compared to that observed in wild-type cells and protoplasts. We concluded that salt tolerance in P. euphratica is most likely mediated through PeTPK1. We propose that, under salt stress, PeTPK1 functions as an outward-rectifying, K+ efflux channel in the vacuole that transfers K+ to the cytosol to maintain K+ homeostasis.

Keywords

K+ flux NaCl PeTPK1 Populus euphratica Protoplast Tobacco BY-2 cells 

Notes

Acknowledgments

The research was supported jointly by the Fundamental Research Funds for the Central Universities (JC2011-2), the National Natural Science Foundation of China (31170570, 30872005), the Foundation for the Supervisors of Beijing Excellent Doctoral Dissertations (YB20081002201), the Beijing Natural Science Foundation (6112017), and the Key Projects of the Ministry of Education, PR China (209084). We thank Ms. Junqi Zhang and Meiqin Liu for their assistance in confocal analysis.

References

  1. Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH-and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621–15626PubMedCrossRefGoogle Scholar
  2. Bihler H, Eing C, Hebeisen S, Roller A, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. Plant Physiol 139:417–424PubMedCrossRefGoogle Scholar
  3. Brodelius P, Nilsson K (1983) Permeabilization of immobilized plant cells, resulting in release of intracellularly stored products with preserved cell viability. Eur J Appl Microbiol Biotechnol 17:275–280CrossRefGoogle Scholar
  4. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683PubMedCrossRefGoogle Scholar
  5. Cha-um S, Chuencharoen S, Mongkolsiriwatana C, Ashraf M, Kirdmanee C (2012) Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell Tissue Organ Cult 110:23–33CrossRefGoogle Scholar
  6. Chen SL, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333PubMedCrossRefGoogle Scholar
  7. Chen SL, Li JK, Wang SS, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees 15:186–194CrossRefGoogle Scholar
  8. Chen SL, Li JK, Fritz E, Wang SS, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage 168:217–230CrossRefGoogle Scholar
  9. Chen SL, Li JK, Wang SS, Fritz E, Hüttermann A, Altman A (2003) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can J For Res 33:967–975CrossRefGoogle Scholar
  10. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246CrossRefGoogle Scholar
  11. Chen ZY, Wu YJ, Di LJ, Wang GD, Shen YF (2012) The AtCCX1 transporter mediates salinity tolerance in both Arabidopsis and yeast. Plant Cell Tissue Organ Cult 109:91–99CrossRefGoogle Scholar
  12. Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol l46:1924–1933CrossRefGoogle Scholar
  13. Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661PubMedCrossRefGoogle Scholar
  14. Czempinski K, Zimmermann S, Ehrhardt T, Müller-Röber B (1997) New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J l16:2565–2575CrossRefGoogle Scholar
  15. Dai SX, Chen SL, Fritz E, Olbrich A, Kettner C, Polle A, Hüttermann A (2006) Ion compartmentation in leaf cells of Populus euphratica and P. tomentosa under salt stress. J Beijing For Univ 28:1–5 (in Chinese with English abstract)Google Scholar
  16. Ding MQ, Hou PC, Shen X, Wang MJ, Deng SR, Sun J, Xiao F, Wang RG, Zhou XY, Lu CF, Zhang DQ, Zheng XJ, Hu ZM, Chen SL (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269PubMedCrossRefGoogle Scholar
  17. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  18. Dreyer I, Porée F, Schneider A, Mittelstädt J, Bertl A, Sentenac H, Thibaud JB, Roeber BM (2004) Assembly of plant shaker-like K+ out channels requires two distinct sites of the channel α-subunit. Biophys J 87:858–872PubMedCrossRefGoogle Scholar
  19. Dubcovsky J, Luo MC, Zhong GY, Bransteiter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999PubMedGoogle Scholar
  20. Dunkel M, Latz A, Schumacher K, Müller T, Becker D, Hedrich R (2008) Targeting of vacuolar membrane localized members of the TPK channel family. Mol Plant 1:938–949PubMedCrossRefGoogle Scholar
  21. Escalante-Pérez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309PubMedCrossRefGoogle Scholar
  22. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121CrossRefGoogle Scholar
  23. Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731PubMedCrossRefGoogle Scholar
  24. Goldstein SA, Price LA, Rosenthal DN, Pausch MH (1996) ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:13256–13261PubMedCrossRefGoogle Scholar
  25. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184PubMedCrossRefGoogle Scholar
  26. Gu RL, Fonseca S, Puskás LG, Hackler LJR, Zvara Á, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24:265–276PubMedCrossRefGoogle Scholar
  27. Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920PubMedCrossRefGoogle Scholar
  28. Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258:1152–1155PubMedCrossRefGoogle Scholar
  29. Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in K+ channel signature sequences. Biophys J 66:1061–1067PubMedCrossRefGoogle Scholar
  30. Isayenkov S, Isner JC, Maathuis FJM (2011) Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell 23:756–768PubMedCrossRefGoogle Scholar
  31. Junghans U, Polle A, Düchting P, Weller E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531PubMedCrossRefGoogle Scholar
  32. Karimi M, Inzé D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195PubMedCrossRefGoogle Scholar
  33. Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695PubMedCrossRefGoogle Scholar
  34. Kochian LV, Lucas WJ (1988) Potassium transport in roots. Adv Bot Res 15:93–177CrossRefGoogle Scholar
  35. Kochian LV, Shaff JE, Kühtreiber WM, Jaffe LF, Lucas WJ (1992) Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+ and Ca2+ fluxes in maize roots and maize suspension cells. Planta 188:601–610CrossRefGoogle Scholar
  36. Kühtreiber WM, Jaffe LF (1990) Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol 110:1565–1573PubMedCrossRefGoogle Scholar
  37. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedCrossRefGoogle Scholar
  38. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996a) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011PubMedGoogle Scholar
  39. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996b) A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties. J Biol Chem 271:4183–4187PubMedCrossRefGoogle Scholar
  40. Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot (Lond) 84:123–133CrossRefGoogle Scholar
  41. Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96:158–168CrossRefGoogle Scholar
  42. Maîtrejean M, Wudick MM, Voelker C, Prinsi B, Mueller-Roeber B, Czempinski K, Pedrazzini E, Vitale A (2011) Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. Plant Physiol 156:1783–1796PubMedCrossRefGoogle Scholar
  43. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San DiegoGoogle Scholar
  44. Mazea D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. J Cell Biol 66:198–200CrossRefGoogle Scholar
  45. Mills D, Robinson K, Hodges TK (1985) Sodium and potassium fluxes and compartmentation in roots of Atriplex and oat. Plant Physiol 92:23–28Google Scholar
  46. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  47. Nocarova E, Fischer L (2009) Cloning of transgenic tobacco BY-2 cells: an efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol 9(44):1–11Google Scholar
  48. Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978–1985PubMedCrossRefGoogle Scholar
  49. Ottow EA, Polle A, Brosché M, Kangasjärvi J, Dibrov P, Zörb C, Teichmann T (2005a) Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol 58:73–86CrossRefGoogle Scholar
  50. Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi J, Jiang XN, Polle A (2005b) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762–1772PubMedCrossRefGoogle Scholar
  51. Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346PubMedCrossRefGoogle Scholar
  52. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663PubMedCrossRefGoogle Scholar
  53. Schönknecht G, Spoormaker P, Steinmeyer R, Brüggeman L, Ache P, Dutta R, Reintanz B, Godde M, Hedrich R, Palme K (2002) KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Lett 511:28–32PubMedCrossRefGoogle Scholar
  54. Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441–471PubMedCrossRefGoogle Scholar
  55. Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404PubMedCrossRefGoogle Scholar
  56. Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837CrossRefGoogle Scholar
  57. Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. Springer, BerlinGoogle Scholar
  58. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665PubMedCrossRefGoogle Scholar
  59. Sun J, Dai SX, Wang RG, Chen SL, Li NY, Zhou XY, Lu CF, Shen X, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009a) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 29:1175–1186PubMedCrossRefGoogle Scholar
  60. Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009b) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153PubMedCrossRefGoogle Scholar
  61. Sun J, Li LS, Liu MQ, Wang MJ, Ding MQ, Deng SR, Lu CF, Zhou XY, Shen X, Zheng XJ, Chen SL (2010a) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tissue Organ Cult 103:205–215CrossRefGoogle Scholar
  62. Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL (2010b) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958PubMedCrossRefGoogle Scholar
  63. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan B, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé CJ, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi P, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  64. Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Ann Rev Plant Biol 54:575–603CrossRefGoogle Scholar
  65. Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A sec14p-nodulin domain phosphaidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812PubMedCrossRefGoogle Scholar
  66. Voelker C, Gomez-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czempinski K, Dreyer I (2010) Roles of tandem-pore K+ channel in plants—a puzzle still need to be solved. Plant Biol 12:56–63PubMedCrossRefGoogle Scholar
  67. Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353PubMedCrossRefGoogle Scholar
  68. Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2003) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1–14CrossRefGoogle Scholar
  69. Wang RG, Chen SL, Deng L, Fritz E, Hüttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581–591CrossRefGoogle Scholar
  70. Wang RG, Chen SL, Zhou XY, Shen X, Deng L, Zhu HJ, Shao J, Shi Y, Dai SX, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957PubMedCrossRefGoogle Scholar
  71. Wei Q, Hu P, Kuai BK (2012) Ectopic expression of an Ammopiptanthus mongolicus H+-pyrophosphatase gene enhances drought and salt tolerance in Arabidopsis. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-012-0157-2
  72. Xu Y, Sun T, Yin LP (2006) Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J Integr Plant Biol 48:823–831CrossRefGoogle Scholar
  73. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar
  74. Zonia L, Cordeiro S, TupýJ FeijòJA (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3, 4, 5, 6-tetrakisphosphate. Plant Cell 14:2233–2249PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Feifei Wang
    • 1
  • Shurong Deng
    • 1
  • Mingquan Ding
    • 1
    • 2
  • Jian Sun
    • 1
    • 3
  • Meijuan Wang
    • 1
  • Huipeng Zhu
    • 1
  • Yansha Han
    • 1
  • Zedan Shen
    • 1
  • Xiaoshu Jing
    • 1
  • Fan Zhang
    • 1
  • Yue Hu
    • 1
  • Xin Shen
    • 1
  • Shaoliang Chen
    • 1
  1. 1.College of Biological Sciences and Technology (Box 162)Beijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.College of Agricultural and Food ScienceZhejiang Agricultural and Forestry UniversityHangzhouPeople’s Republic of China
  3. 3.College of Life ScienceJiangsu Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations