Skip to main content

Advertisement

Log in

Enhanced expression of the human CD14 protein in tobacco using a 22-kDa alpha-zein signal peptide

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The human CD14, a high affinity receptor for lipopolysaccharides (LPS), is involved in the innate immunity system and the inflammatory response. There is increasing interest in using recombinant approaches to produce purified CD14 protein for therapeutic uses. Plants provide ideal expression systems for the production of recombinant proteins, but the levels of expression of recombinant proteins produced in planta are still not high. To improve expression levels of CD14 the 22-kDa alpha-zein signal peptide (ZSP) from maize was fused to the human CD14 cDNA so that recombinant CD14 could stably accumulate in plant cells. The human CD14 gene and the modified human CD14 cDNA with the 22-kDa ZSP were respectively transformed into tobacco to produce transgenic plants. Western blot analysis confirmed human CD14 accumulation in the transgenic tobacco. The concentration of the recombinant protein in the tobacco leaves was measured by ELISA, and the results suggested that fusion with the 22-kDa alpha-ZSP effectively increased the accumulation of the recombinant protein (rCD14). The concentration of rCD14 in some of the transgenic lines was 19.54 μg g−1 tobacco leaf (fw), which was about 0.6 % of the total soluble protein. The rCD14 protein showed natural LPS-binding bioactivity by using U937 cells mensuration. Our results suggested that the maize 22-kDa alpha-zein signal peptide could be used to increase the accumulation of recombinant protein in tobacco leaves so that proteins can be produced in abundant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

als :

Acetolactate synthase gene

CaMV:

Cauliflower mosaic virus

epsp :

5-Enolpyrul-shikimate-3-phosphate synthase gene

fw:

Fresh weight

GPI:

Glycosylphosphatidylinositol

LPS:

Lipopolysaccharide

mCD14:

Membrane-associated CD14

MW:

Molecular weight

PSV:

Protein storage vacuole

rCD14:

Recombinant CD14

sCD14:

Soluble CD14

WT:

Wild type

ZSP:

Zein signal peptide

References

  • Bazil V, Strominger JL (1991) Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol 147(5):1567–1574

    PubMed  CAS  Google Scholar 

  • Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    Article  PubMed  CAS  Google Scholar 

  • Bernard A, Boumsell L, Hill C (1984) Joint report of the first international workshop on human leucocyte antigens by the investigators of the participating laboratories. In: Bernard A, Boumselt L, Dausset J, Milstein C, Schlossman SF (eds) Leucocyte typing-human leucocyte differentiation antigens detected by monoclonal antibodies. Springer, Berlin, pp 9–135

  • Blais DR, Altosaar I (2006) Human CD14 expressed in seeds of transgenic tobacco displays similar proteolytic resistance and bioactivity with its mammalian-produced counterpart. Transgenic Res 15:151–164

    Article  PubMed  CAS  Google Scholar 

  • Blais DR, Vascotto SG, Griffith M, Altosaar I (2005) LBP and CD14 secreted in tears by the lacrimal glands modulate the LPS response of corneal epithelial cells. Invest Ophthalmol Vis Sci 46:4235–4244

    Article  PubMed  Google Scholar 

  • Blais DR, Harrold J, Altosaar I (2006) Killing the messenger in the nick of time: persistence of breast milk sCD14 in the neonatal gastrointestinal tract. Pediatr Res 59(3):371–376

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and quantitative method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    Article  PubMed  CAS  Google Scholar 

  • Chabouté ME, Combettes B, Clément B, Gigot C, Philipps G (1998) Molecular characterization of tobacco ribonucleotide reductase RNR1 and RNR2 cDNAs and cell cycle-regulated expression in synchronized plant cells. Plant Mol Biol 38(5):797–806

    Article  PubMed  Google Scholar 

  • Chrispeels MJ, Faye L (1996) A production system for industrial and pharmaceutical proteins. In: Owen MRL, Pen J (eds) Transgenic plants. Wiley, New York, pp 99–113

    Google Scholar 

  • Conley AJ, Joensuu JJ, Richman A, Menassa R (2011a) Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Plant Biotechnol J 9:419–433

    Article  PubMed  CAS  Google Scholar 

  • Conley AJ, Zhu H, Le LC, Jevnikar AM, Lee BH, Brandle JE, Menassa R (2011b) Recombinant protein production in a variety of nicotiana hosts: a comparative analysis. Plant Biotechnol J 9:434–444

    Article  PubMed  CAS  Google Scholar 

  • Girard LS, Bastin M, Courtois D (2004) Expression of the human milk protein sCD14 in tobacco plant cell culture. Plant Cell, Tissue Organ Cult 78:253–260

    Article  CAS  Google Scholar 

  • Hallbeck AL, Walz TM, Wasteson A (2001) Interleukin-6 enhances transforming growth factor-alpha mRNA expression in macrophage-like human monocytoid (U-937-1) cells. Biosci Rep 21(3):325–339

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Kapila J, DeRycke R, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kihara T, Zhao CR, Kobayashi Y, Takita E, Kawazu T, Koyama H (2006) Simple identification of transgenic Arabidopsis plants carrying a single copy of the integrated gene. Biosci Biotechnol Biochem 70(7):1780–1783

    Article  PubMed  CAS  Google Scholar 

  • López C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against citrus tristeza virus in transgenic Mexican lime. Mol Plant Pathol 11:33–41

    Article  PubMed  Google Scholar 

  • Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599

    Article  PubMed  CAS  Google Scholar 

  • Majerle A, Kidric J, Jerala R (1999) Expression and refolding of functional fragments of the human lipopolysaccharide receptor CD14 in Escherichia coli and Pichia pastoris. Protein Expr Purif 17:96–104

    Article  PubMed  CAS  Google Scholar 

  • Menassa R, Nguyen V, Jevnikar A, Brandle J (2001) A self-contained system for the field production of plant recombinant interleukin-10. Mol Breed 8:177–185

    Article  CAS  Google Scholar 

  • Mubmann V, Serek M, Winkelmann T (2011) Selection of transgenic Petunia plants using the green fluorescent protein (GFP). Plant Cell, Tissue Organ Cult 107:483–492

    Article  Google Scholar 

  • Nomura S, Inamori K, Muta T, Yamazaki S, Sunakawa Y, Iwanaga S, Takeshige K (2003) Purification and characterization of human soluble CD14 expressed in Pichia pastoris. Protein Expr Purif 28:310–320

    Article  PubMed  CAS  Google Scholar 

  • Pires AS, Rosa S, Castanheira S, Fevereiro P, Abranches R (2012) Expression of a recombinant human erythropoietin in suspension cell cultures of Arabidopsis, tobacco and Medicago. Plant Cell, Tissue Organ Cult. doi:10.1007/s11240-012-0141-x

    Google Scholar 

  • Pompa A, Vitale A (2006) Retention of a bean phaseolin/maize γ-Zein fusion in the endoplasmic reticulum depends on disulfide bond formation. Plant Cell 18:2608–2621

    Article  PubMed  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    CAS  Google Scholar 

  • Randall JJ, Sutton DW, Hanson SF, Kemp JD (2005) BiP and zein binding domains within the delta zein protein. Planta 221:656–666

    Article  PubMed  CAS  Google Scholar 

  • Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23(2):769–784

    Article  PubMed  CAS  Google Scholar 

  • Stelter F, Pfister M, Bernheiden M, Jack RS, Bufler P, Engelmann H, Schütt C (1996) The myeloid differentiation antigen CD14 is N- and O-glycosylated. Contribution of N-linked glycosylation to different soluble CD14 isoforms. Eur J Biochem 236(2):457–464

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  PubMed  CAS  Google Scholar 

  • Takaiwa F, Takagi H, Hirose S, Wakasa Y (2007) Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J 5:84–92

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz P, Ludevid MD (2009) Eukaryotic protein production in designed storage organelles. BMC Biol 7:5

    Article  PubMed  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  PubMed  CAS  Google Scholar 

  • Wen L, Tan B, Wu W (2012) Estimating transgene copy number in precocious trifoliate orange by TaqMan real-time PCR. Plant Cell Tiss Organ Cult 109:363–371

    Article  CAS  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolyaccharide and LPS binding protein. Science 249(4975):1431–1433

    Article  PubMed  CAS  Google Scholar 

  • Wright KE, Prior F, Sardana R, Altosaar I, Dudani AK, Ganz PR, Tackaberry ES (2001) Sorting of glycoprotein B from human cytomegalovirus to protein storage vesicles in seeds of transgenic tobacco. Transgenic Res 10:177–181

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Bai J, Wang W, Song W, Wang Z (2002) Gene cloning of human soluble CD14 and its expression in eucaryotic cells. Chin J Traumatol 5:156–160

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Roberta Greenwood (Shandong University, China) for her help in editing this manuscript. This research was supported by National Basic Research Program of China (973 Program, 2009CB118400) and Natural Science Foundation of China (no. 30771127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juren Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Sun, L., Li, C. et al. Enhanced expression of the human CD14 protein in tobacco using a 22-kDa alpha-zein signal peptide. Plant Cell Tiss Organ Cult 112, 9–18 (2013). https://doi.org/10.1007/s11240-012-0206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0206-x

Keywords

Navigation