Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 111, Issue 1, pp 69–78 | Cite as

Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit (Passiflora edulis Sims)

  • Diego Ismael Rocha
  • Lorena Melo Vieira
  • Francisco André Ossamu Tanaka
  • Luzimar Campos da Silva
  • Wagner Campos Otoni
Original Paper

Abstract

This study aimed to characterize the anatomical events and ultrastructural aspects of direct and indirect in vitro organogenesis in Passiflora edulis. Root explants were cultured on induction medium, supplemented with 4.44 μM 6-benzyladenine. Roots at different stages of development were collected and processed for observation by light microscopy and scanning and transmission electron microscopy. Patterns of direct and indirect regeneration were observed in the explants. During direct organogenesis, the organogenic buds and nodules, formed from meristemoids, originated from the pericycle regions distant from the cut surface. Completely differentiated buds were observed after 20 days of culture. During indirect organogenesis, bud formation occurred via meristemoids at the periphery of the calli, which differentiated from the cortical region of the initial explant. Regardless of the regeneration pattern, the meristemoids had similar ultrastructural characteristics; however, differences were reported in the nuclear shape of the cells of the meristemoids formed directly and indirectly. This study provides important information for enhancing the understanding and characterization of the organogenic process in non-meristematic explants and provides information on the use of roots as explants in genetic transformation protocols for this important tropical species.

Keywords

Histology Meristemoids Passiflora Pericycle Root culture Shoot regeneration 

References

  1. Alexandre RS, Otoni WC, Dias JMM, Bruckner CH, Lopes JC (2009) In vitro propagation of passionfruit. In: Alexandre RS, Bruckner CH, Lopes JC (eds) Propagation of passionfruit: morphological, physiological and genetic aspects. EDUFES, Vitória, pp 117–184 (in Portuguese)Google Scholar
  2. Almeida WAB, Mourão Filho FAAW, Mendes BMJ, Rodriguez APM (2006) Histological characterization of in vitro adventitious organogenesis in Citrus sinensis. Biol Plant 50:321–325. doi:10.1007/s10535-006-0044-y CrossRefGoogle Scholar
  3. Appezzato-da-Glória B, Machado SR (2004) Ultrastructural analysis of in vitro direct and indirect organogenesis. Rev Bras Bot 27:429–437. doi:10.1590/S0100-84042004000300004 Google Scholar
  4. Arora K, Sharma M, Srivastava J, Ranade SA, Sharma AK (2011) In vitro cloning of Azadirachta indica from root explants. Biol Plant 55:164–168. doi:10.1007/s10535-011-0023-9 CrossRefGoogle Scholar
  5. Atta R, Laurens L, Boucheron-Dubuisson E, Guivarch A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644. doi:10.1111/j.1365-313X.2008.03715.x PubMedCrossRefGoogle Scholar
  6. Becerra DC, Forero AP, Góngora GA (2004) Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell Tiss Organ Cult 79:87–90. doi:10.1023/B:TICU.0000049440.10767.29 CrossRefGoogle Scholar
  7. Biasi LA, Falco MC, Rodriguez APM, Mendes BMJ (2000) Organogenesis from internodal segments of yellow passion fruit. Sci Agric 57:661–665. doi:10.1590/S0103-90162000000400010 CrossRefGoogle Scholar
  8. Bordallo PN, Silva DH, Maria J, Cruz CD, Fontes EP (2004) Somaclonal variation on in vitro callus culture potato cultivars. Hortic Bras 22:300–304. doi:10.1590/S0102-05362004000200027 CrossRefGoogle Scholar
  9. Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171. doi:10.1016/S1360-1385(03)00051-7 PubMedCrossRefGoogle Scholar
  10. Dias LLC, Santa-Catarina C, Ribeiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tiss Organ Cult 99:199–208. doi:10.1007/s11240-009-9594-y CrossRefGoogle Scholar
  11. Evert RF (2006) Esau’s plant anatomy, meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, New JerseyGoogle Scholar
  12. Faria JLC, Segura J (1997a) Micropropagation of yellow passionfruit by axillary bud proliferation. HortScience 32:1276–1277Google Scholar
  13. Faria JLC, Segura J (1997b) In vitro control of adventitious bud differentiation by inorganic medium components and silver thiosulfate in explants of Passiflora edulis f. flavicarpa. In Vitro Cell Dev Biol Plant 33:209–212CrossRefGoogle Scholar
  14. Fernando JA, Vieira MLC, Machado SR, Appezzato-da-Gloria B (2007) New insights into the in vitro organogenesis process: the case of Passiflora. Plant Cell Tiss Organ Cult 91:37–44. doi:10.1007/s11240-007-9275-7 CrossRefGoogle Scholar
  15. Ferreira S, Batista D, Serrazina S, Pais MS (2009) Morphogenesis induction and organogenic nodule differentiation in Populus euphratica Oliv. leaf explants. Plant Cell Tiss Organ Cult 96:35–43. doi:10.1007/s11240-008-9457-y CrossRefGoogle Scholar
  16. Flores PS, Otoni WC, Dhingra OD, Diniz SPSS, Santos TM, Bruckner CH (2012) In vitro selection of yellow passion fruit genotypes for resistance to Fusarium vascular wilt. Plant Cell Tiss Organ Cult 108:37–45. doi:10.1007/s11240-011-0009-5 CrossRefGoogle Scholar
  17. FNP CONSULTORIA & COMÉRCIO (2009) Agrianual 2009: anuário estatístico da agricultura brasileira. Argos Comunicação, São Paulo, pp 387–394 (in Portuguese)Google Scholar
  18. Fortes AM, Pais MS (2000) Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot 87:971–979. doi:10.2307/2656996 PubMedCrossRefGoogle Scholar
  19. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5 PubMedCrossRefGoogle Scholar
  20. Haensch KT (2004) Morpho-histological study of somatic embryo-like structures in hypocotyl cultures of Pelargonium x hortorum Bailey. Plant Cell Rep 22:376–381. doi:10.1007/s00299-003-0726-2 PubMedCrossRefGoogle Scholar
  21. Junqueira NTV, Braga MF, Faleiro FG, Peixoto JR, Bernacci LC (2005) Potential of wild species of passion fruit plant as resistance source to diseases. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passionfruit: germplasm and breeding, 1st edn. Embrapa Cerrados, Planaltina, pp 80–108, in PortugueseGoogle Scholar
  22. Kantharajah AS, Dodd WA (1990) In vitro micropropagation of Passiflora edulis (purple passionfruit). Ann Bot 65:337–339Google Scholar
  23. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  24. Lombardi SP, Passos IRS, Nogueira MCS, Appezzato-da-Glória B (2007) In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata Mast. Brazil Arch Biol Technol 50:239–247. doi:10.1590/S1516-89132007000200009 CrossRefGoogle Scholar
  25. Melo MO, Melo M, Appezzato-da-Glória B (2001) Histological of the callogenesis and organogenesis from root segments of Curcuma zedoaria Roscoe. Brazil Arch Biol Technol 44:197–203. doi:10.1590/S1516-89132001000200014 Google Scholar
  26. Motte H, Verstraeten I, Werbrouck S, Geelen D (2011) CUC2 as an early marker for regeneration competence in Arabidopsis root explants. J Plant Physiol 168:1598–1601. doi:10.1016/j.jplph.2011.02.014 PubMedCrossRefGoogle Scholar
  27. Moyo M, Jeffrey FF, Staden JV (2009) In vitro morphogenesis of organogenic nodules derived from Sclerocarya birrea subsp. caffra leaf explants. Plant Cell Tiss Organ Cult 98:273–280. doi:10.1007/s11240-009-9559-1 CrossRefGoogle Scholar
  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  29. Nascimento AVS, Santana EM, Braz ASK, Alfenas PF, Pio-Ribeiro G, Andrade GP, Carvalho MG, Zerbini FM (2006) Cowpea aphid-borne mosaic virus (CABMV) is widespread in passionfruit in Brazil and causes passionfruit woodiness disease. Arch Virol 151:1797–1809PubMedCrossRefGoogle Scholar
  30. O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty, MelbourneGoogle Scholar
  31. Otahola V (2000) Regeneración de plantas de parchita (Passiflora edulis f. flavicarpa) a partir del cultivo in vitro de discos de hojas. Bioagro 12:71–74 (in Spanish)Google Scholar
  32. Parveen S, Shahzad A (2011) A micropropagation protocol for Cassia angustifolia Vahl. from root explants. Acta Physiol Plant 33:789–796. doi:10.1007/s11738-010-0603-x CrossRefGoogle Scholar
  33. Pihakaski-Maunsbach K, Nygaard KB, Jensen KH, Rasmussen O (1993) Cellular changes in early development of regenerating thin cell layer-explants of rapeseed analysed by light and electron microscopy. Physiol Plant 87:167–176. doi:10.1111/j.1399-3054.1993.tb00139.x CrossRefGoogle Scholar
  34. Reis LB, Silva ML, Lima ABP, Oliveira MLP, Pinto DLP, Lani ERG, Otoni WC (2007) Agrobacterium rhizogenes-mediated transformation of passionfruit species: Passiflora cincinnata and P. edulis flavicarpa. Acta Horticult 738:425–431Google Scholar
  35. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208PubMedCrossRefGoogle Scholar
  36. Rocha DI, Vieira LM, Tanaka FA, Silva LC, Otoni WC (2012) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata masters: histocytological and histochemical evidences. Protoplasma. doi:10.1007/s00709-011-0318-x Google Scholar
  37. Rosa YBCJ, Dornelas MC (2012) In vitro regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plant Cell Tiss Organ Cult 108:91–99. doi:10.1007/s11240-011-0016-6 CrossRefGoogle Scholar
  38. Sahai A, Shahzad A, Sharma S (2010) Histology of organogenesis and somatic embryogenesis in excised root cultures of an endangered species Tylophora indica (Asclepiadaceae). Aust J Bot 58:198–205. doi:10.1071/BT09220 CrossRefGoogle Scholar
  39. Silva CV, Oliveira LS, Loriato VAP, Silva LC, Campos JMS, Viccini LF, Oliveira EJ, Otoni WC (2011) Organogenesis from root explants of commercial populations of Passiflora edulis Sims and a wild passionfruit species, P. cincinnata Masters. Plant Cell Tiss Organ Cult 107:407–416. doi:10.1007/s11240-011-9991-x CrossRefGoogle Scholar
  40. Simões C, Albarello N, Callado CH, Castro TC, Mansur E (2009) New approaches for shoot production and establishment of in vitro root cultures of Cleome rosea Vahl. Plant Cell Tiss Organ Cult 98:79–86. doi:10.1007/s11240-009-9540-z CrossRefGoogle Scholar
  41. Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887. doi:10.1007/s11103-005-4547-2 PubMedCrossRefGoogle Scholar
  42. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43. doi:10.1016/S0022-5320(69)90033-1 PubMedCrossRefGoogle Scholar
  43. Trevisan F, Mendes BMJ (2005) Optimization of in vitro organogenesis in passion fruit (Passiflora edulis f. flavicarpa). Sci Agric 62:346–350CrossRefGoogle Scholar
  44. Tylicki A, Wojciech B, Malepszy S, Kulawiec M, Kuraś M (2002) Structural and ultrastructural analysis of Solanum lycopersicoides protoplasts during diploid plant regeneration. Ann Bot 90:269–278. doi:10.1093/aob/mcf186 PubMedCrossRefGoogle Scholar
  45. Varshney A, Sangapillai R, Patil MS, Johnson TS (2011) Histological evidence of morphogenesis from various explants of Jatropha curcas L. Trees 25:689–694. doi:10.1007/s00468-011-0546-x CrossRefGoogle Scholar
  46. Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252. doi:10.1016/j.tplants.2007.04.002 PubMedCrossRefGoogle Scholar
  47. Vieira MLC, Carneiro MS (2004) Passiflora spp., passionfruit. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Oxford, pp 435–453Google Scholar
  48. Vieira MLC, Oliveira EJ, Matta FP, Pádua JG, Monteiro M (2005) Biotechnological methods applied to passionfruit breeding. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passionfruit: germplasm and breeding. Embrapa Cerrados, Planaltina, pp 411–453 (in Portuguese)Google Scholar
  49. Vila S, Gonzalez A, Rey H, Mroginski L (2005) Plant regeneration, origin, and development of shoot buds from root segments of Melia azedarach l. (Meliaceae) seedlings. In Vitro Cell Dev Biol Plant 41:746–751. doi:10.1079/IVP2005692 CrossRefGoogle Scholar
  50. Vinocur B, Carmi T, Altman A, Ziv M (2000) Enhanced bud regeneration in aspen (Populus tremula L.) root cultured in liquid media. Plant Cell Rep 19:1146–1154. doi:10.1007/s002990000243 CrossRefGoogle Scholar
  51. Yang JL, Seong ES, Kim MJ, Ghimire BK, Kang WH, Yu CY, Li CH (2010) Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea L. var. italica) root explants. Plant Cell Tiss Organ Cult 100:49–58. doi:10.1007/s11240-009-9615-x CrossRefGoogle Scholar
  52. Zerbini FM, Otoni WC, Vieira MLC (2008) Passionfruit. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants, v.5, Tropical and subtropical fruit and nuts, 1st edn. Wiley, Berlin, pp 213–223Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Diego Ismael Rocha
    • 1
  • Lorena Melo Vieira
    • 1
  • Francisco André Ossamu Tanaka
    • 2
  • Luzimar Campos da Silva
    • 3
  • Wagner Campos Otoni
    • 1
  1. 1.Plant Tissue Culture Laboratory/BIOAGRO, Plant Biology DepartmentFederal University of ViçosaViçosaBrazil
  2. 2.Plant Pathology and Nematology DepartmentResearch Support Center/Electron Microscopy Applied to Agriculture, University of São PauloPiracicabaBrazil
  3. 3.Plant Anatomy Laboratory, Plant Biology DepartmentFederal University of ViçosaViçosaBrazil

Personalised recommendations