Skip to main content
Log in

Somatic embryogenesis and plant regeneration from immature zygotic embryo cultures of mountain ash (Sorbus pohuashanensis)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant regeneration through somatic embryogenesis was achieved using immature zygotic embryos (ZE) of Sorbus pohuashanensis as explants. Over 50% of immature ZEs from immature seed collected at 30 days after pollination produced direct somatic embryos (SEs) on Murashige and Skoog (MS) medium supplemented with 0–0.44 μM 6-benzyladenine (BA) in combination with 5.73 μM naphthaleneacetic acid (NAA) or with 0.91–2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D) alone. Fourteen to 23 SEs per explant were regenerated on MS medium supplemented with BA 0.44 μM in combination with NAA 5.73 μM. SE formation decreased when sucrose concentrations were higher than 40 g L−1. Repetitive embryogenesis occurred following culture on solid MS medium containing 12 μM abscisic acid, 75 g L−1 polyethylene glycol, and 20 g L−1 sucrose at 25 ± 1°C under a 16-h photoperiod with a light intensity of 40 μmol m−2 s−1. Over 40% of the mature SEs germinated on solid MS medium under light condition described previously. Up to 40% of the regenerated plantlets were successfully acclimatized under greenhouse conditions. Plantlets derived from SEs grew vigorously with similar morphology as those germinated from ZEs. Histological studies of explants at various developmental stages of somatic embryogenesis revealed that SEs passed through globular, heart, torpedo, and mature stages. Similar to ZE suspensors, similar structures of SE degenerated in later stages of embryo development. ZE and SE are a effective means of regenerating tissue culture plantlets for S. pohuashanesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

½ MS:

Half-strength of MS macroelements

2,4-D:

2,4-dichlorophenoxyacetic acid

ABA:

Abscisic acid

BA:

6-benzyladenine

CH:

Casein hydrolysate

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog (1962) medium

NAA:

Naphthaleneacetic acid

PEG:

Polyethylene glycol

PGR(s):

Plant growth regulator(s)

SE(s):

Somatic embryo(s)

SH:

Schenck and Hildebrandt (1972)

SSE(s):

Secondary somatic embryo(s)

TDZ:

Thidiazuron

WPM:

Woody plant medium (1980)

ZE(s):

Zygotic embryo(s)

References

  • Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. doi:10.1023/A:1015673200621

    Article  Google Scholar 

  • Arrillaga I, Lerma V, Perez-Bermudez P, Segura J (1995) Callus and somatic embryogenesis from cultured anthers of service tree (Sorbus domestica L.). Hort Sci 30(5):1078–1079

    Google Scholar 

  • Arrillaga I, Marzo T, Segura J (1991) Micropropagation of juvenile and adult Sorbus domestica L. Plant Cell Tissue Organ Cult 27(3):341–348. doi:10.1007/BF00157600

    Article  Google Scholar 

  • Arrillaga I, Segura J (1992) Adventitious shoot regeneration from hypocotyl cultures of service tree (Sorbus domestica L.). J Hort Sci 67(3):371–373

    Google Scholar 

  • Basharuddin J, Smith ML (1993) After-ripening requirement, dormancy and germination in rowan (Sorbus aucuparia L.). In: Edwards DGW (ed) Dormancy and barriers to germination: proceedings of an international symposium of IUFRO Project Group P2.04-00 (Seed Problems). Victoria, British Columbia, Canada, pp 1–5

  • Buendía-González L, Estrada-Zúñiga ME, Orozco-Villafuerte J, Cruz-Sosa F, Vernon-Carter E J (2011). Somatic embryogenesis of the heavy metal accumulator Prosopis laevigata. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-011-0042-4

  • Canhoto JM, Lopes L, Cruz GS (1999) Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell Tissue Organ Cult 57:13–21. doi:10.1023/A:1006273128228

    Article  Google Scholar 

  • Canhoto JM, Rama S, Cruz GS (2006) Somatic embryogenesis and plant regeneration in carob (Ceratonia siliqua L.). In Vitro Cell Dev Biol 42:514–519. doi:10.1079/IVP2006819

    CAS  Google Scholar 

  • Capelo AM, Silva S, Brito G, Santos C (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tissue Organ Cult 103:237–242. doi:10.1007/s11240-010-9773-x

    Article  CAS  Google Scholar 

  • Chalupa V (1983) In vitro propagation of willows (Salix spp.), European mountain-ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biol Plant 25(4):305–307. doi:10.1007/BF02902879

    Article  Google Scholar 

  • Chalupa V (1987) Effect of benzylaminopurine and thidiazuron on in vitro shoot proliferation of Tilia cordata Mill., Sorbus aucuparia L. and Robinia pseudoacacia L. Biol Plant 29:425–429. doi:10.1007/BF02882213

    Article  CAS  Google Scholar 

  • Chalupa V (1988) In vitro propagation of small-leaved linden (Tilia cordata), black locust (Robinia pseudoacacia) and mountain ash (Sorbus aucuparia) and growth of trees cultivated in vitro. Lesnictvi 34(8):705–720

    Google Scholar 

  • Chalupa V (2002) In vitro propagation of mature trees of Sorbus aucuparia L. and field performance of micropropagated trees. J For Sci 48(12):529–535

    Google Scholar 

  • Correia SM, Canhoto JM (2010) Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae). Protoplasma 242:95–107. doi:10.1007/s00709-010-0130-z

    Article  PubMed  Google Scholar 

  • Dai JL, Tan X, Zhan YG, Zhang YQ, Xiao S, Gao Y, Xu DW, Wang T, Wang XC, You XL (2011) Rapid and repetitive plant regeneration of Aralia elata Seem. via somatic embryogenesis. Plant Cell Tissue Organ Cult 104:125–130. doi:10.1007/s11240-010-9801-x

    Article  Google Scholar 

  • Ďurkovič J, Mišalová A (2009) Wood formation during ex vitro acclimatisation in micropropagated true service tree (Sorbus domestica L.). Plant Cell Tissue Organ Cult 96:343–348. doi:10.1007/s11240-008-9492-8

    Article  Google Scholar 

  • Kong DM, Preece JE, Shen HL (2011) Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.). Plant Cell Tissue Organ Cult. doi:10.1007/s11240-011-0062-0

    Google Scholar 

  • Konieczny R, Sliwinska E, Pilarska M, Tuleja M (2011) Morphohistological and flow cytometric analyses of somatic embryogenesis in Trifolium nigrescens Viv. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-011-0081-x

    Google Scholar 

  • Krajňáková J, Gömöry D, Häggman H (2008) Somatic embryogenesis in Greek fir. Can J For Res 38:760–769. doi:10.1139/X07-141

    Article  Google Scholar 

  • Lall S, Mandegaran Z, Roberts AV (2006) Shoot multiplication and adventitious regeneration in Sorbus aucuparia. Plant Cell Tissue Organ Cult 85:23–29. doi:10.1007/s11240-005-9045-3

    Article  CAS  Google Scholar 

  • Malá J, Máchová P, Cvrčková H, Karady M, Novák O, Mikulík J, Hauserová E, Greplová J, Strnad M, Doležal K (2009) Micropropagation of wild service tree (Sorbus torminalis[L.]Crantz): the regulative role of different aromatic cytokinins during organogenesis. J Plant Growth Regul 28:341–348. doi:10.1007/s00344-009-9099-2

    Article  Google Scholar 

  • Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619. doi:10.1079/IVP2005687

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Oh MJ, Na HR, Choi HK, Liu JR, Kim SW (2010) High frequency plant regeneration system for Nymphoides coreana via somatic embryogenesis from zygotic embryo-derived embryogenic cell suspension cultures. Plant Biotechnol Rep 4:125–128. doi:10.1007/s11816-010-0126-3

    Article  Google Scholar 

  • Poupin MJ, Arce-Johnson P (2005) Transgenic trees for a new era. In Vitro Cell Dev Biol Plant 41:91–101. doi:10.1079/IVP2004587

    Article  CAS  Google Scholar 

  • Prakash MG, Gurumurthi K (2010) Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 100:13–20. doi:10.1007/s11240-009-9611-1

    Article  CAS  Google Scholar 

  • Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation:comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758. doi:10.1007/s00299-003-0586-9

    PubMed  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50(1):199–204. doi:10.1139/b72-026

    Google Scholar 

  • Sharma P, Koche V, Quraishi A, Mishra SK (2005) Somatic embryogenesis in Buchanania Lanzan Spreng. In Vitro Cell Dev Biol Plant 41:645–647. doi:10.1079/IVP2005680

    Article  Google Scholar 

  • Shi XP, Dai XG, Liu GF, Bao MZ (2009) Enhancement of somatic embryogenesis in camphor tree (Cinnamomum camphora L.): osmotic stress and other factors affecting somatic embryo formation on hormone-free medium. Trees 23:1033–1042. doi:10.1007/s00468-009-0345-9

    Article  Google Scholar 

  • Shi XP, Dai XG, Liu GF, Zhang JW, Ning GG, Bao MZ (2010) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cell Dev Biol Plant 46(2):117–125. doi:10.1007/s11627-009-9272-0

    Article  CAS  Google Scholar 

  • Sivakumar P, Gnanam R, Ramakrishnank K, Manickam A (2010) Somatic embryogenesis and regeneration of Vigna radiata. Biol Plant 54(2):245–251. doi:10.1007/s10535-010-0043-x

    Article  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35. doi:10.1023/A:1023345803336

    Article  CAS  Google Scholar 

  • Subotić A, Trifunović M, Jevremović S, Petrić M (2010) Morpho-histological study of direct somatic embryogenesis in endangered species Frittilaria meleagris. Biol Plant 54(3):592–596. doi:10.1007/s10535-010-0107-y

    Article  Google Scholar 

  • Tang QY, Feng GM (2002) Practical statistical analysis and DPS data handling system. Science Publishing, Beijing

    Google Scholar 

  • Troch V, Werbrouck S, Geelen D, Labeke MCV (2009) Optimization of horse chestnut (Aesculus hippocastanum L.) somatic embryo conversion. Plant Cell Tissue Organ Cult 98:115–123. doi:10.1007/s11240-009-9544-8

    Article  CAS  Google Scholar 

  • Vooková B, Kormuťák A (2002) Some futures of somatic embryo maturation of Algerian fir. In Vitro Cell Dev Biol Plant 38:549–551. doi:10.1079/IVP2002330

    Article  Google Scholar 

  • Walker DR, Parrott WA (2001) Effect of polyethylene glycol and sugar alcohols on soybean somatic embryo germination and conversion. Plant Cell Tissue Organ Cult 64:55–62. doi:10.1023/A:1010601402098

    Article  CAS  Google Scholar 

  • Xie DY, Hong Y (2001) Regeneration of Acacia mangium through somatic embryogenesis. Plant Cell Rep 20:34–40. doi:10.1007/s002990000288

    Article  CAS  Google Scholar 

  • Yadav CB, Jha P, Mahalakshmi C, Anjaiah V, Bhat V (2009) Somatic embryogenesis and regeneration of Cenchrus ciliaris genotypes from immature inflorescence explants. Biol Plant 53(4):603–609. doi:10.1007/s10535-009-0111-2

    Article  CAS  Google Scholar 

  • You XL, Yi JS, Choi YE (2006) Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma 227:105–112. doi:10.1007/s00709-006-0149-3

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the China Postdoctoral Science Foundation (20110491015), Fundamental Research Funds for the Central Universities of China (DL10BA04), and the Postdoctoral Science Foundation of Heilongjiang Province of China (LBH-10284). We thank for the kind help of Dr. Daniel Struve, professor from Ohio State University, USA, for reviewing the revised copy of this manuscript, and thank all the colleagues in our lab for constructive discussion and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Li, Y. & Shen, H. Somatic embryogenesis and plant regeneration from immature zygotic embryo cultures of mountain ash (Sorbus pohuashanensis). Plant Cell Tiss Organ Cult 109, 547–556 (2012). https://doi.org/10.1007/s11240-012-0121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0121-1

Keywords