Skip to main content
Log in

Agrobacterium-mediated transformation of the medicinal plant Centaurea montana

Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient transformation system was developed for Centaurea montana by co-cultivation of leaf explants with Agrobacterium tumefaciens strain AGL1 that contained a plasmid harboring the isopentenyl transferase gene under the control of the developmentally regulated Atmyb32 promoter of Arabidopsis thaliana and the gene encoding for hygromycin resistance under the control of the Cauliflower Mosaic Virus 35S (CaMV35S) promoter. A total of 990 explants were infected with Agrobacterium, and 18 shoots were regenerated resulting in an overall transformation efficiency of 1.8%. Molecular analyses, including PCR, Southern blotting and RT-PCR, were performed on T0 and T1 plants to confirm chromosomal integration and expression of the transgene in the phenotypically normal transformed plants. Transformation of C. montana was also performed using A. tumefaciens supervirulent strain EHA105 harboring the β-glucuronidase (GUS) reporter gene. Expression of the GUS gene in the putative transgenics was confirmed using a histochemical GUS assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Amoo SO, Finnie JF, Van Staden J (2009) In vitro propagation of Huernia hystrix: an endangered medicinal and ornamental succulent. Plant Cell Tissue Organ Cult 96:273–278. doi:10.1007/s11240-008-9484-8

    Article  Google Scholar 

  • Barampuram S, Zhang Z (2011) Recent advances in plant transformation. In: Birchler JA (ed) Plant chromosome engineering: methods and protocols, methods in molecular biology, vol 701. Springer, pp 1–35

  • Bilang R, Iida S, Peter HA, Potrykus I, Paszkowski J (1991) The 39-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene 100:247–250

    Article  PubMed  CAS  Google Scholar 

  • Bremer K (1994) Asteraceae. Cladistics and classification. Timber press, Portland

    Google Scholar 

  • Bruno M, Paternostro MP, Gedris TE, Herz W (1996) Sesquiterpene lactones and other constituents of Centaurea nicaensis. Phytochemistry 41b:335–336

    Article  Google Scholar 

  • Corral P, Mallon R, Rodriguez-Oubina J, Gonzalez ML (2010) Multiple shoot induction and plant regeneration of the endangered plant Crepis novoana. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-010-9854-x

  • Coste A, Vlase L, Halmagyi A, Deliu A, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatu. Plant Cell Tissue Organ Cult 106:279–288. doi:10.1007/s11240-011-9919-5

    Article  CAS  Google Scholar 

  • Dural H, Bagci Y, Ertugrul K, Demirelma H, Flamini G, Cioni PL, Morelli I (2003) Essential oil composition of two endemic Centaurea species from Turkey, Centaurea mucronifea and Centaurea chrysantha, collected in the same habitat. Biochem Syst Ecol 31:1417–1425

    Article  CAS  Google Scholar 

  • Faizal A, Lambert E, Foubert K, Apers S, Geelen D (2011) In vitro propagation of four saponin producing Maesa species. Plant Cell Tissue Organ Cult 106:215–233. doi:10.1007/s11240-010-9909-z

    Article  CAS  Google Scholar 

  • Fay MF (1994) In what situation is in vitro culture appropriate to plant conservation? Biodiv Conserv 3:176–183

    Article  Google Scholar 

  • Feng X, Dube SK, Bottino PJ, Kung S (1990) Restoration of shooty morphology of a non-tumorous mutant of Nicotiana glauca × N. langsdorffii by cytokinin and the isopentenyl transferase gene. Plant Mol Biol 15:407–420

    Article  PubMed  CAS  Google Scholar 

  • Font M, Garnatje T, Garcia-Jacas T, Susanna A (2002) Delineation and phylogeny of Centaurea sect. Acrocentron based on DNA sequences: a restoration of the genus Crocodylium and indirect evidence of introgression. Plant Syst Evol 234:15–26

    Article  CAS  Google Scholar 

  • Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharyya S (2010) Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tissue Organ Cult 102:109–114

    Article  Google Scholar 

  • Garbacki N, Gloaguen V, Damas J, Bodart P, Tits M, Angenot L (1999) Anti-inflammatory and immunological effects of Centaurea cyanus flower heads. J Ethnopharm 68:235–241

    Article  CAS  Google Scholar 

  • Garcia-Jacas N, Susanna A, Ilarslan R (1996) Aneuploidy in the Centaureinae (Compositae): is n = 7 the end of the series? Taxon 45:39–42

    Article  Google Scholar 

  • Garcia-Jacas N, Susana A, Garnatje T, Vilatersana R (2001) Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Ann Bot 87:503–515

    Article  CAS  Google Scholar 

  • Gonnet JF (1996) Flavonoid glycoside variations in the progeny of wild specimens of Centaurea montana and comments on the origin of their natural diversity. Biochem Syst Ecol 24:447–460

    Article  CAS  Google Scholar 

  • Gousiadou C, Skaltsa H (2003) Secondary metabolites from Centaurea orphanidea. Biochem Syst Ecol 31:389–396

    Article  CAS  Google Scholar 

  • He-Ping S, Yong-Tue L, Tie-Shan S, Keung Eric TP (2011) Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-011-9976-9

  • Honda C, Kusaba S, Nishijima T, Moriguchi T (2011) Transformation of kiwifruit using the ipt gene alters the tree architecture. Plant Cell Tissue Organ Cult 107:45–53

    Article  Google Scholar 

  • Hood E, Gelvin S, Melchers L, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Trans Res 2:208–218

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387

    Article  CAS  Google Scholar 

  • Koukoulista E, Skaltsa H, Karioti A, Demetzos C, Dimas K (2002) Bioactive sesquiterpene lactones from Centaurea species and their cytotoxic/cytostatic activity against human cell lines in vitro. Planta Med 68:649–652

    Article  Google Scholar 

  • Kumarasamy Y, Fergusson ME, Nahar L, Sarker SD (2002) Bioactivity of moschamindole from Centaurea moschata. Pharm Biol 40:307–310

    Article  CAS  Google Scholar 

  • Kumarasamy Y, Middleton M, Reid RG, Nahar L, Sarker SD (2003) Biological activity of serotonin conjugates from the seeds of Centaurea nigra. Fitoterapia 74:609–612

    Article  PubMed  CAS  Google Scholar 

  • Lazari DM, Skaltsa HD, Constantinidis T (2000) Volatile constituents of Centaurea pelia DC., C. thessala Hausskn. subsp. drakiensis (Freyn and Sint.) Georg. and C. zuccariniana DC. from Greece. Flavour Fragr J 15:7–11

    Article  CAS  Google Scholar 

  • Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  PubMed  Google Scholar 

  • Lin YH, Ludlow E, Kalla R, Pallaghy C, Emmerling M, Spangenberg G (2003) Organ-specific, developmentally-regulated and abiotic stress-induced activities of four Arabidopsis thaliana promoters in transgenic white clover (Trifolium repens L.). Plant Sci 165:1437–1444

    Article  CAS  Google Scholar 

  • Lystvan K, Belokurova V, Sheludko Y, Ingham JL, Prykhodko V, Kishchenko O, Paton E, Kuchuk M (2010) Production of bakuchiol by in vitro systems of Psoralea drupacea Bge. Plant Cell Tissue Organ Cult 101:99–103

    Article  CAS  Google Scholar 

  • Mallon R, Rodriguez-Oubina J, Gonzalez ML (2011) Shoot regeneration from in vitro-derived leaf and root explants of Centaurea ultreiae. Plant Cell Tissue Organ Cult 106:523–530

    Article  CAS  Google Scholar 

  • Martinez-Bonfil BP, Salcedo-Morales G, Lopez-Laredo AR, Ventura-Zapata E, Evangelista-Lozano S, Trejo-Tapia G (2011) Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-011-9970-2

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous trans(genes)? Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  • McCabe M, Lee G, Schepers F, Jordi W, Stoopen G, Davelaar E, Rhijn J, Power JB, Davey MR (2001) Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    Article  PubMed  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotech 107:193–232

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotech J 3:203–214

    Article  CAS  Google Scholar 

  • Palmer CD, Keller WA (2011) Plant regeneration using immature zygotic embryos of Tribulus terrestris. Plant Cell Tissue Organ Cult 105:121–127. doi:10.1007/s11240-010-9838-x

    Article  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro NL, Nahar L, Kumarasamy Y, Mir-Babayev N, Sarker SD (2002) Flavonoid C-glucosides and a lignin from Centaurea macrocephala (Compositae). Biochem Syst Ecol 30:1097–1100

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotech Adv 18:91–120

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning (a laboratory manual), vol 1, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1.42–1.46, 6.1–6.19, 9.31–9.57 [vol 2, pp 14.1–14.35]

  • Sheludko YV (2010) Recent advances in plant biotechnology and genetic engineering for production of secondary metabolites. Tsitol Genet 44:65–75

    PubMed  CAS  Google Scholar 

  • Shoeb M, MacManus SM, Jaspars M, Trevidu J, Nahar L, Kong-Thoo-Lin P, Sarker SD (2006) Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana (Asteraceae), and its in vitro cytotoxic activity against the CaCo2 colon cancer cells. Tetrahedron 62:11172–11177

    Article  CAS  Google Scholar 

  • Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18:829–834

    Article  CAS  Google Scholar 

  • USDA-ARS-GRIN Database (2002) USDA, ARS, National Germplasm Resources Laboratory, Germplasm Resources Information Network (GRIN). National Germplasm Resources Laboratory, Beltsville

    Google Scholar 

  • Veluthambi K, Gupta AK, Sharma A (2003) The current status of plant transformation technologies. Curr Sci 84:368–380

    CAS  Google Scholar 

  • Wissam AA, Josekutty PC, Goldman SL, Potlakayala SD, Sairam RV (2011) Efficient in vitro propagation of Centaurea montana L. Propag Ornam Plants 11:40–43

    Google Scholar 

  • Wagenitz G, Hellwig FH (1996) Evolution of characters and phylogency of the Centaureinae. In: Hind DJN, Beentje HG (eds) Compositae: systematics. Proceedings of the international compositae conference, Kew, 1994. Royal Botanic Gardens, Kew, pp 491–510

    Google Scholar 

  • Youssef DTA (1998) Sesquiterpene lactones of Centaurea scoparia. Phytochemistry 49:1733–1737

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the funding for this work through the USDA-American University of Beirut grant. We are thankful to Professor German Spangenberg who kindly provided us with the Atmyb32-ipt construct and for his guidance. The authors would like to thank Ms Julianne Dauber and Danielle LaFleur-Do for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sairam V. Rudrabhatla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou-Alaiwi, W.A., Potlakayala, S.D., Goldman, S.L. et al. Agrobacterium-mediated transformation of the medicinal plant Centaurea montana . Plant Cell Tiss Organ Cult 109, 1–8 (2012). https://doi.org/10.1007/s11240-011-0067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0067-8

Keywords

Navigation