Agrobacterium-mediated transformation of the medicinal plant Centaurea montana

  • Wissam A. Abou-Alaiwi
  • Shobha D. Potlakayala
  • Stephen L. Goldman
  • Puthiyaparambil C. Josekutty
  • Deepkamal N. Karelia
  • Sairam V. RudrabhatlaEmail author
Original Paper


An efficient transformation system was developed for Centaurea montana by co-cultivation of leaf explants with Agrobacterium tumefaciens strain AGL1 that contained a plasmid harboring the isopentenyl transferase gene under the control of the developmentally regulated Atmyb32 promoter of Arabidopsis thaliana and the gene encoding for hygromycin resistance under the control of the Cauliflower Mosaic Virus 35S (CaMV35S) promoter. A total of 990 explants were infected with Agrobacterium, and 18 shoots were regenerated resulting in an overall transformation efficiency of 1.8%. Molecular analyses, including PCR, Southern blotting and RT-PCR, were performed on T0 and T1 plants to confirm chromosomal integration and expression of the transgene in the phenotypically normal transformed plants. Transformation of C. montana was also performed using A. tumefaciens supervirulent strain EHA105 harboring the β-glucuronidase (GUS) reporter gene. Expression of the GUS gene in the putative transgenics was confirmed using a histochemical GUS assay.


Centaurea montana Agrobacterium-mediated transformation Isopentenyl transferase Atmyb32 Delayed senescence 



We would like to acknowledge the funding for this work through the USDA-American University of Beirut grant. We are thankful to Professor German Spangenberg who kindly provided us with the Atmyb32-ipt construct and for his guidance. The authors would like to thank Ms Julianne Dauber and Danielle LaFleur-Do for proof reading the manuscript.


  1. Amoo SO, Finnie JF, Van Staden J (2009) In vitro propagation of Huernia hystrix: an endangered medicinal and ornamental succulent. Plant Cell Tissue Organ Cult 96:273–278. doi: 10.1007/s11240-008-9484-8 CrossRefGoogle Scholar
  2. Barampuram S, Zhang Z (2011) Recent advances in plant transformation. In: Birchler JA (ed) Plant chromosome engineering: methods and protocols, methods in molecular biology, vol 701. Springer, pp 1–35Google Scholar
  3. Bilang R, Iida S, Peter HA, Potrykus I, Paszkowski J (1991) The 39-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene 100:247–250PubMedCrossRefGoogle Scholar
  4. Bremer K (1994) Asteraceae. Cladistics and classification. Timber press, PortlandGoogle Scholar
  5. Bruno M, Paternostro MP, Gedris TE, Herz W (1996) Sesquiterpene lactones and other constituents of Centaurea nicaensis. Phytochemistry 41b:335–336CrossRefGoogle Scholar
  6. Corral P, Mallon R, Rodriguez-Oubina J, Gonzalez ML (2010) Multiple shoot induction and plant regeneration of the endangered plant Crepis novoana. Plant Cell Tissue Organ Cult. doi:  10.1007/s11240-010-9854-x
  7. Coste A, Vlase L, Halmagyi A, Deliu A, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatu. Plant Cell Tissue Organ Cult 106:279–288. doi: 10.1007/s11240-011-9919-5 CrossRefGoogle Scholar
  8. Dural H, Bagci Y, Ertugrul K, Demirelma H, Flamini G, Cioni PL, Morelli I (2003) Essential oil composition of two endemic Centaurea species from Turkey, Centaurea mucronifea and Centaurea chrysantha, collected in the same habitat. Biochem Syst Ecol 31:1417–1425CrossRefGoogle Scholar
  9. Faizal A, Lambert E, Foubert K, Apers S, Geelen D (2011) In vitro propagation of four saponin producing Maesa species. Plant Cell Tissue Organ Cult 106:215–233. doi: 10.1007/s11240-010-9909-z CrossRefGoogle Scholar
  10. Fay MF (1994) In what situation is in vitro culture appropriate to plant conservation? Biodiv Conserv 3:176–183CrossRefGoogle Scholar
  11. Feng X, Dube SK, Bottino PJ, Kung S (1990) Restoration of shooty morphology of a non-tumorous mutant of Nicotiana glauca × N. langsdorffii by cytokinin and the isopentenyl transferase gene. Plant Mol Biol 15:407–420PubMedCrossRefGoogle Scholar
  12. Font M, Garnatje T, Garcia-Jacas T, Susanna A (2002) Delineation and phylogeny of Centaurea sect. Acrocentron based on DNA sequences: a restoration of the genus Crocodylium and indirect evidence of introgression. Plant Syst Evol 234:15–26CrossRefGoogle Scholar
  13. Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharyya S (2010) Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tissue Organ Cult 102:109–114CrossRefGoogle Scholar
  14. Garbacki N, Gloaguen V, Damas J, Bodart P, Tits M, Angenot L (1999) Anti-inflammatory and immunological effects of Centaurea cyanus flower heads. J Ethnopharm 68:235–241CrossRefGoogle Scholar
  15. Garcia-Jacas N, Susanna A, Ilarslan R (1996) Aneuploidy in the Centaureinae (Compositae): is n = 7 the end of the series? Taxon 45:39–42CrossRefGoogle Scholar
  16. Garcia-Jacas N, Susana A, Garnatje T, Vilatersana R (2001) Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Ann Bot 87:503–515CrossRefGoogle Scholar
  17. Gonnet JF (1996) Flavonoid glycoside variations in the progeny of wild specimens of Centaurea montana and comments on the origin of their natural diversity. Biochem Syst Ecol 24:447–460CrossRefGoogle Scholar
  18. Gousiadou C, Skaltsa H (2003) Secondary metabolites from Centaurea orphanidea. Biochem Syst Ecol 31:389–396CrossRefGoogle Scholar
  19. He-Ping S, Yong-Tue L, Tie-Shan S, Keung Eric TP (2011) Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-011-9976-9
  20. Honda C, Kusaba S, Nishijima T, Moriguchi T (2011) Transformation of kiwifruit using the ipt gene alters the tree architecture. Plant Cell Tissue Organ Cult 107:45–53CrossRefGoogle Scholar
  21. Hood E, Gelvin S, Melchers L, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Trans Res 2:208–218CrossRefGoogle Scholar
  22. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387CrossRefGoogle Scholar
  23. Koukoulista E, Skaltsa H, Karioti A, Demetzos C, Dimas K (2002) Bioactive sesquiterpene lactones from Centaurea species and their cytotoxic/cytostatic activity against human cell lines in vitro. Planta Med 68:649–652CrossRefGoogle Scholar
  24. Kumarasamy Y, Fergusson ME, Nahar L, Sarker SD (2002) Bioactivity of moschamindole from Centaurea moschata. Pharm Biol 40:307–310CrossRefGoogle Scholar
  25. Kumarasamy Y, Middleton M, Reid RG, Nahar L, Sarker SD (2003) Biological activity of serotonin conjugates from the seeds of Centaurea nigra. Fitoterapia 74:609–612PubMedCrossRefGoogle Scholar
  26. Lazari DM, Skaltsa HD, Constantinidis T (2000) Volatile constituents of Centaurea pelia DC., C. thessala Hausskn. subsp. drakiensis (Freyn and Sint.) Georg. and C. zuccariniana DC. from Greece. Flavour Fragr J 15:7–11CrossRefGoogle Scholar
  27. Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165PubMedCrossRefGoogle Scholar
  28. Lin YH, Ludlow E, Kalla R, Pallaghy C, Emmerling M, Spangenberg G (2003) Organ-specific, developmentally-regulated and abiotic stress-induced activities of four Arabidopsis thaliana promoters in transgenic white clover (Trifolium repens L.). Plant Sci 165:1437–1444CrossRefGoogle Scholar
  29. Lystvan K, Belokurova V, Sheludko Y, Ingham JL, Prykhodko V, Kishchenko O, Paton E, Kuchuk M (2010) Production of bakuchiol by in vitro systems of Psoralea drupacea Bge. Plant Cell Tissue Organ Cult 101:99–103CrossRefGoogle Scholar
  30. Mallon R, Rodriguez-Oubina J, Gonzalez ML (2011) Shoot regeneration from in vitro-derived leaf and root explants of Centaurea ultreiae. Plant Cell Tissue Organ Cult 106:523–530CrossRefGoogle Scholar
  31. Martinez-Bonfil BP, Salcedo-Morales G, Lopez-Laredo AR, Ventura-Zapata E, Evangelista-Lozano S, Trejo-Tapia G (2011) Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-011-9970-2
  32. Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous trans(genes)? Plant Physiol 107:679–685PubMedGoogle Scholar
  33. McCabe M, Lee G, Schepers F, Jordi W, Stoopen G, Davelaar E, Rhijn J, Power JB, Davey MR (2001) Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516PubMedCrossRefGoogle Scholar
  34. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotech 107:193–232CrossRefGoogle Scholar
  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  36. Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotech J 3:203–214CrossRefGoogle Scholar
  37. Palmer CD, Keller WA (2011) Plant regeneration using immature zygotic embryos of Tribulus terrestris. Plant Cell Tissue Organ Cult 105:121–127. doi: 10.1007/s11240-010-9838-x CrossRefGoogle Scholar
  38. Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995PubMedCrossRefGoogle Scholar
  39. Ribeiro NL, Nahar L, Kumarasamy Y, Mir-Babayev N, Sarker SD (2002) Flavonoid C-glucosides and a lignin from Centaurea macrocephala (Compositae). Biochem Syst Ecol 30:1097–1100CrossRefGoogle Scholar
  40. Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotech Adv 18:91–120CrossRefGoogle Scholar
  41. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning (a laboratory manual), vol 1, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1.42–1.46, 6.1–6.19, 9.31–9.57 [vol 2, pp 14.1–14.35]Google Scholar
  42. Sheludko YV (2010) Recent advances in plant biotechnology and genetic engineering for production of secondary metabolites. Tsitol Genet 44:65–75PubMedGoogle Scholar
  43. Shoeb M, MacManus SM, Jaspars M, Trevidu J, Nahar L, Kong-Thoo-Lin P, Sarker SD (2006) Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana (Asteraceae), and its in vitro cytotoxic activity against the CaCo2 colon cancer cells. Tetrahedron 62:11172–11177CrossRefGoogle Scholar
  44. Snyder GW, Ingersoll JC, Smigocki AC, Owens LD (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18:829–834CrossRefGoogle Scholar
  45. USDA-ARS-GRIN Database (2002) USDA, ARS, National Germplasm Resources Laboratory, Germplasm Resources Information Network (GRIN). National Germplasm Resources Laboratory, BeltsvilleGoogle Scholar
  46. Veluthambi K, Gupta AK, Sharma A (2003) The current status of plant transformation technologies. Curr Sci 84:368–380Google Scholar
  47. Wissam AA, Josekutty PC, Goldman SL, Potlakayala SD, Sairam RV (2011) Efficient in vitro propagation of Centaurea montana L. Propag Ornam Plants 11:40–43Google Scholar
  48. Wagenitz G, Hellwig FH (1996) Evolution of characters and phylogency of the Centaureinae. In: Hind DJN, Beentje HG (eds) Compositae: systematics. Proceedings of the international compositae conference, Kew, 1994. Royal Botanic Gardens, Kew, pp 491–510Google Scholar
  49. Youssef DTA (1998) Sesquiterpene lactones of Centaurea scoparia. Phytochemistry 49:1733–1737PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Wissam A. Abou-Alaiwi
    • 1
  • Shobha D. Potlakayala
    • 2
  • Stephen L. Goldman
    • 1
  • Puthiyaparambil C. Josekutty
    • 2
  • Deepkamal N. Karelia
    • 2
  • Sairam V. Rudrabhatla
    • 1
    • 2
    Email author
  1. 1.Plant Science Research CenterUniversity of ToledoToledoUSA
  2. 2.Penn State UniversityMiddletownUSA

Personalised recommendations