Skip to main content
Log in

Analysis of transgene integration and expression following biolistic transfer of different quantities of minimal expression cassette into sugarcane (Saccharum spp. hybrids)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum spp. hybrids) is an interspecific hybrid with a highly polyploid and frequently aneuploid genome. This C4 grass accounts for nearly 70% of the global sugar production and more recently has become an important biofuel feedstock. Biolistic gene transfer of plasmid DNA is the most frequently used approach for genetic transformation of sugarcane. Minimal expression cassettes lacking vector backbone sequences (MC) have been reported to support simple transgene integration in other species. In this study, we introduced a MC of nptII into embryogenic callus derived from immature leaf whorl cross-sections by biolistic gene transfer. The precipitation equivalents of 12.5, 25 or 50 ng of the nptII MC were delivered per shot to the target tissue with 1.0 μm gold particles. A total of 203 independent putative transgenic plants were regenerated following 80 bombardments and selection on geneticin or paromomycin containing media and 176 transgenic lines were confirmed with PCR. Twenty independent transgenic lines were selected for Southern blot analysis and expression analysis by NPTII ELISA from each of the three treatments. Genomic DNA from transgenic sugarcane plants displayed two to 13 nptII hybridization signals on Southern blots. There was a trend toward reduced transgene integration complexity and reduced transgene expression levels when lower (12.5 ng) MC was used per shot. These results demonstrate that backbone free MCs can be efficiently integrated and expressed in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agharkar M, Lomba P, Altpeter F, Zhang H, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotech J 5:791–801

    Article  CAS  Google Scholar 

  • Altpeter F, Oraby H (2010) Sugarcane. In: Kempken F, Jung C (eds) Biotechnology in agriculture and forestry. Genetic modification of plants. Springer, Heidelberg, pp 453–472

    Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Stoger E, Vasil IK (1996) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16:12–17

    Article  CAS  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breeding 15:305–327

    Article  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2(3):409–416

    Article  CAS  Google Scholar 

  • Breitler JC, Labeyrie A, Meynard D, Legavre T, Guiderdoni E (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719

    Article  PubMed  CAS  Google Scholar 

  • Chengalrayan K, Gallo-Meagher M (2001) Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell Dev Biol Plant 37:434–439

    CAS  Google Scholar 

  • Dixon L, Nyffenegger T, Delley G, Martinez-Izquierdo J, Hohn T (1986) Evidence for replicative recombination in cauliflower mosaic virus. Virology 150:463–468

    Article  PubMed  CAS  Google Scholar 

  • Edmé SJ, Comstock JC, Miller JD, Tai PYP (2005) Determination of DNA content and genome size in sugarcane. J Am Soc Sugar Cane Technol 25:1–16

    Google Scholar 

  • Falco MC, Tulmann Neto A, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    Article  CAS  Google Scholar 

  • FAO (2009) Food and Agriculture Organization of the United Nations publishing FAOSTAT. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low copy number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  PubMed  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Heinz DJ, Mee GWP, Nickell LG (1969) Chromosome numbers of some saccharum species hybrids and their cell suspension cultures. Amer J Bot 56(4):450–456

    Article  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov E (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploidy genome. Plant Physiol 119:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    Article  PubMed  CAS  Google Scholar 

  • Jakowitsch J, Papp I, Moscone EA, van der Winden J, Matzke M, Matzke AJM (1999) Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J 17(2):131–140

    Article  PubMed  CAS  Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances biotic stress tolerance. Transgenic Res 17:93–104

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Flavell RA (1977) A physical map of the DNA regions flanking the rabbit β-globin gene. Cell 12:429–439

    Article  PubMed  CAS  Google Scholar 

  • Lowe BA, Prakash NS, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840

    Article  PubMed  CAS  Google Scholar 

  • Menossi M, Silva-Filho MC, Vincentz M, Van-Sluys MA, Souza GM (2008) Sugarcane functional genomics: Gene discovery for agronomic trait development. Int J Plant Genomics (eprint). doi:10.1155/2008/458732

  • Müller AE, Kamisugi Y, Grüneberg R, Niedenhof I, Hörold RJ, Meyer P (1999) Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol 291:29–46

    Article  PubMed  Google Scholar 

  • Odell JT, Nagy F, Chun NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35s promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  • Rochester DE, Winer JA, Shah DM (1986) The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J 5:451–458

    PubMed  CAS  Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organisation in potato after particle bombardment-mediated (co-) transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  PubMed  CAS  Google Scholar 

  • Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge). Plant Cell Rep 27:1755–1765

    Article  PubMed  CAS  Google Scholar 

  • Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373

    Article  PubMed  CAS  Google Scholar 

  • Van Rijs J, Giguère V, Hurst J, Van Agthoven T, Van Kessel AG, Goyert S, Grosveld F (1985) Chromosomal localization of the human Thy-1 gene. Proc Natl Acad Sci USA 82:5832–5835

    Article  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814

    Article  PubMed  CAS  Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH (2011) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20:759–772

    Google Scholar 

  • Zhao Y, Qian Q, Wang H, Hunang D (2007) Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. J Genet Genomics 34:824–835

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Rob Gilbert, EREC in Belle Glade, FL and Dr. Neil Glynn, USDA-ARS, Canal Point, FL for providing donor plants of sugarcane cultivar CP88-1762, Jeff Seib for training Jae Yoon Kim in safe handling of radio isotopes and the Conrad Fafard Inc. Apopka, FL for donation of plant growing medium. Jae Yoon Kim was partially supported by a National Research Foundation of Korea (NRF) grant from the Korean government (MEST, KRF-2005-908-1-F00001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.Y., Gallo, M. & Altpeter, F. Analysis of transgene integration and expression following biolistic transfer of different quantities of minimal expression cassette into sugarcane (Saccharum spp. hybrids). Plant Cell Tiss Organ Cult 108, 297–302 (2012). https://doi.org/10.1007/s11240-011-0043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0043-3

Keywords

Navigation