Advertisement

Transgenic sweet potato expressing mammalian cytochrome P450

  • Nadia AnwarEmail author
  • Kazuo N. Watanabe
  • Junko A. Watanabe
Original Paper

Abstract

Sweet potato [Ipomoea batatas (L.) Lam] is considered to be recalcitrant to transformation and regeneration because of its genotype-dependent in vitro responses. The lack of a genotype-independent transformation and regeneration system limits biotechnological applications in this plant species. To establish a transformation system for a diverse group of sweet potato genotypes, we examined sweet potato regeneration after transformation in five cultivars. An Agrobacterium tumefaciens transformation system was used for the introduction of mammalian cytochrome P450 genes, which are capable of conferring herbicide tolerance. Among the different factors studied, including explant type, plasmid vectors, and auxin type in the initiation media, auxin type had the greatest effect on the regeneration response. Of the auxins tested, only 4-fluorophenoxyacetic acid (4FA) induced regeneration from all cultivars. In terms of the quality of calli, 4FA promoted the induction of type I calli, which were capable of somatic embryo formation, whereas type II calli fail to produce somatic embryos. The frequency of somatic embryo formation was also affected by the composition of the embryo-induction media. Transgenic plants were regenerated from all cultivars. The stable integration and expression of transgenes was confirmed by several approaches. This Agrobacterium-mediated transformation system should be applicable to a wide range of sweet potato cultivars.

Keywords

Ipomoea batatas Agrobacterium tumefaciens Genotype-independent transformation Herbicide tolerance Cytochrome P450 

Abbreviations

ABA

Abscisic acid

2,4-D

2,4-Dichlorophenoxyacetic acid

4FA

4-Fluorophenoxyacetic acid

GA3

Gibberellic acid A3

GUS

β-Glucuronidase

IAA

Indole-3-acetic acid

LS

Linsmaier and Skoog medium

Notes

Acknowledgments

This research was supported in part by Grant-in-Aid no. 21248001 from the Japan Society for the Promotion of Science (JSPS). N.A. would like to thank Dr. A. Kikuchi, University of Tsukuba, Japan, for his invaluable comments and critical suggestions in the preparation of this manuscript. The authors would also like to thank Mr. Naka and Mr. M. Kanazawa for the basic tissue culture work at Department of Biotechnology, Kinki University, Japan. We also thank Prof. H. Ohkawa, Fukuyama University, Japan, for providing the gene constructs and Dr. O. Yamakawa, NARO, Japan, for providing the plant material.

References

  1. Al-Mazrooei S, Bhatti MH, Henshaw GG (1997) Optimisation of somatic embryogenesis in fourteen cultivars of sweet potato [Ipomoea batatas (L.) Lam.]. Plant Cell Rep 16:710–714CrossRefGoogle Scholar
  2. Aloufa MA (2002) Some factors affecting the callus induction and shoot formation in two cultivars of Sweet potato (Ipomoea batatas L. POIS). Cienc Agrotec Lavras 26:964–969Google Scholar
  3. Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao NM, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expressing of a detoxifying enzymes. EMBO J 6:2513PubMedGoogle Scholar
  4. Centro Internacional de la Papa (CIP) (2008) Sweetpotato I. batatas. Available at: http://www.cipotato.org/sweetpotato. Accessed 15 April, 2008
  5. Chee RP, Cantliffe DJ (1988) Somatic embryony patterns and plant regeneration in Ipomoea batatas Poir. In Vitro Cell Dev Bio 24:955–958CrossRefGoogle Scholar
  6. Chee RP, Schultheis JR, Cantliffe DJ (1990) Plant recovery from sweetpotato somatic embryos. Hortic Sci 25:795–797Google Scholar
  7. Choi HJ, Chandrasekhar T, Lee HY, Kim KM (2007) Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method. Plant Cell Tiss Organ Cult 91:235–242CrossRefGoogle Scholar
  8. Cipriani G, Michaud D, Brunelle F, Golmirzaie A, Zhang DP (1999) Expression of soybean proteinase inhibitor in sweetpotato. CIP Program Rep 1997–1998:271–277Google Scholar
  9. Cipriani G, Fuentes S, Bello V, Salazar LF, Ghislain M, Zhang DP (2001) Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus. CIP Program Rep 1999–2000:267–271Google Scholar
  10. Dhir SK, Oglesby J, Bhagsari AS (1998) Plant regeneration via embryogenesis, and transient gene expression in sweetpotato protoplasts. Plant Cell Rep 17:665–669CrossRefGoogle Scholar
  11. Gama MICS, Leite RP Jr, Cordeiro AR, Cantliffe DJ (1996) Transgenic sweetpotato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tiss Org Cult 46:231–244CrossRefGoogle Scholar
  12. Garvel NJ, Jarret RL (1991) A modified CTAB DNA extraction procedure for Muss and lpomoea. Plant Mol Biol Rep 9:262–266CrossRefGoogle Scholar
  13. Guo JM, Liu QC, Zhai H, Wang YP (2006) Regeneration of plants from Ipomoea cairica L. protoplasts and production of somatic hybrids between I. cairica L. and sweetpotato, I. batatas (L.) Lam. Plant Cell Tiss Organ Cult 87:321–327CrossRefGoogle Scholar
  14. Hansen G, Shillito RD, Chilton MD (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94:11726–11730PubMedCrossRefGoogle Scholar
  15. Hetherington AM, Quatrano RS (1991) Mechanism of action of abscisic acid at the cellular level: Tansley Review No 31. New Phytol 119:9–32CrossRefGoogle Scholar
  16. Inui H, Ueyama Y, Shiota N, Ohkawa Y, Ohkawa H (1999) Herbicide metabolism and cross-tolerance in transgenic potato plants expressing human CYP1A1. Pestic Biochem Physiol 64:33–46CrossRefGoogle Scholar
  17. Inui H, Kodama T, Ohkawa Y, Ohkawa H (2000) Herbicide metabolism and cross-tolerance in transgenic potato plants co-expressing human CYP1A1, CYP2B6, and CYP2C19. Pestic Biochem Physiol 66:116–129CrossRefGoogle Scholar
  18. Islam MS, Yoshimoto M, Yahara S, Okuno S, Ishiguro K, Yamakawa O (2002) Identification and characterization of foliar polyphenolic composition in sweet potato (Ipomoea batatas L.) genotypes. J Agric Food Chem 50:3718–3722PubMedCrossRefGoogle Scholar
  19. Joshi RL, Joshi V (1991) Strategies for expression of foreign genes in plants. FEBS Lett 281:l–8Google Scholar
  20. Kawahigashi H, Hirose S, Inui H, Ohkawa H, Ohkawa Y (2005) Enhanced herbicide cross-tolerance in transgenic rice plants coexpressing human CYP1A1, CYP2B6, and CYP2C19. Plant Sci 168:773–781Google Scholar
  21. Kimura T, Otani M, Noda T, Ideta O, Shimada T, Saito A (2001) Absence of amylose in sweetpotato [Ipomoea batatas (L.) Lam.] following the introduction of granule-bound starch synthase cDNA. Plant Cell Rep 20:663–666Google Scholar
  22. Lawton R, Winfield S, Daniell H, Bhagsagi AS, Dhir SK (2000) Expression of green-fluorescent protein gene in sweet potato tissues. Plant Mol Biol Rep 18:139a–139iCrossRefGoogle Scholar
  23. Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KW, Pack KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19:227–239CrossRefGoogle Scholar
  24. Linsmaier EF, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127CrossRefGoogle Scholar
  25. Liu JR, Cantliffe DJ (1984) Organogenesis and plant regeneration in tissue cultures of sweet potato (Ipomoea batatas Poir). Plant Cell Rep 3:112–115CrossRefGoogle Scholar
  26. Liu QC, Zhai H, Wang Y, Zhang DP (2001) Efficient plant regeneration from embryogenic suspension cultures of sweetpotato. In Vitro Cell Dev Biol-Plant 37:564–567Google Scholar
  27. Lockhart JAR, Samuel A, Greaves MP (1990) The evolution of weed control in British agriculture. In: Hance RJ, Holly K (eds) Weed control handbook: principles. Blackwell, Oxford, pp 43–74Google Scholar
  28. López A, Zaldúa Z, García M, García R (1996) Modification of sporamin gene from sweet potato with a synthetic DNA fragment. Nucleotide sequence and expression in E. coli. Biotecnología Aplicada 13:36–42Google Scholar
  29. Lowe JM, Hamilton WDO, Newell CA (1994) Genetic transformation in Ipomoea batatas (L.) Lam (sweetpotato). In: Bajaj YBS (ed) Biotechnology in agriculture and forestry, vol 29. Plant protoplasts and genetic engineering V. Springer, Berlin Heidelberg New York, pp 308–320Google Scholar
  30. Luo HR, Santa Maria M, Benavides J, Zhang DP, Zhang YZ, Ghislain M (2006) Rapid genetic transformation of sweetpotato (Ipomoea batatas (L.) Lam.) via organogenesis. Afr J Biotechnol 5:1851–1857Google Scholar
  31. Martin FW, Jones A (1971) Flowering and fertility changes in six generations of open-pollinated sweet potato. Am J Hortic Sci 96:493–495Google Scholar
  32. Meijer EGM, Brown DCW (1987) Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell Tiss Organ Cult 10:11–19CrossRefGoogle Scholar
  33. Mitchell TD, Bhagsari AS, Ozias-Akins P, Dhir SK (1998) Electroporation-mediated transient gene expression in intact cells of sweetpotato. In Vitro Plant 34(4):319–324CrossRefGoogle Scholar
  34. Morán R, García R, López A, Zaldúa Z, Mena J, García M, Armas R, Somonte D, Rodríguez J, Gómez M, Pimentel E (1998) Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci 139:175–184CrossRefGoogle Scholar
  35. Newell CA, Lowe JM, Merryweather A, Rooke LM, Hamilton WDO (1995) Transformation of sweetpotato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci 107:215–227CrossRefGoogle Scholar
  36. Nickle TC, Yeung EC (1994) Further evidence of a role for abscisic acid in conversion of somatic embryos of Daucus carota. In Vitro Cell Dev Biol 30P:96–103Google Scholar
  37. Okada Y, Saito A, Nishiguchi M, Kimaru T, Mori M, Hanada K, Sakai J, Miyazaki C, Matsuda Y, Murata T (2001) Virus resistance in transgenic sweet potato [Ipomoea batatas L. (Lam.)] expressing the coat protein gene of sweet potato feathery mottle virus. Theor Appl Genet 103:743–751CrossRefGoogle Scholar
  38. Otani M, Shimada T (1996) Efficient embryogenic callus formation in sweet potato (Ipomoea batatas (L.) Lam.). Breed Sci 46:257–260Google Scholar
  39. Otani M, Mii M, Handa T, Kamada H, Shimada T (1993) Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci 94:151–159CrossRefGoogle Scholar
  40. Otani M, Shimada T, Kimura T, Saito A (1998) Transgenic plant production from embryogenic callus of sweetpotato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotechnol 15:11–16Google Scholar
  41. Otani M, Wakita Y, Shimada T (2001) Genetic transformation of sweet potato (Ipomoea batatas (L.) Lam.) by Agrobacterium tumefaciens. Acta Hortic 560:193–196Google Scholar
  42. Otani M, Wakita Y, Shimada T (2003) Production of herbicide-resistant sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium tumefaciens-mediated transformation. Breed Sci 53:145–148CrossRefGoogle Scholar
  43. Prakash CS, Varadarajan U (1992) Genetic transformation of sweetpotato by particle bombardment. Plant Cell Rep 11:53–57CrossRefGoogle Scholar
  44. Shah DM, Turner NE, Fischhoff DA, Horsch RB, Rogers SG, Fraley RT, Jaworski EG (1987) The introduction and expression of foreign genes in plants. Biotechnol Genet Eng Rev 5:82–107Google Scholar
  45. Shimada T, Otani M, Hamada T, Kim SH (2006) Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol 23:85–90CrossRefGoogle Scholar
  46. Shiota N, Nagasawa A, Sakaki T, Yabusaki Y, Ohkawa H (1994) Herbicide-resistant tobacco plants expressing the fused enzyme between rat cytochrome P4501A1 (CYP1A1) and yeast NADPH-cytochrome P450 oxidoreductase. Plant Physiol 106(1):17–23PubMedCrossRefGoogle Scholar
  47. Sihachakr D, Ducreux G (1987) Plant regeneration from protoplast culture of sweet potato (Ipomoea batatas Lam.). Plant Cell Rep 6:326–328CrossRefGoogle Scholar
  48. Sihachakr D, Haïcour R, Cavalcante JMA, Umboh I, Nzoghé D, Servaes A, Ducreux G (1997) Plant regeneration in sweet potato (Ipomoea batatas L., Convolvulaceae). Euphytica 96:143–152CrossRefGoogle Scholar
  49. Song GQ, Honda H, Yamaguchi KI (2004) Efficient Agrobacterium tumefaciens-mediated transformation of sweetpotato (Ipomoea batatas (L.) Lam.) from stem explants using a two-step kanamycin-hygromycin selection method. In Vitro Cell Dev Biol-Plant 40:359–365CrossRefGoogle Scholar
  50. Thomas B, Takagia T, Miyazakia A, Otanic M, Shimadac T, Kusanoa T (2005) Production of mouse adiponectin, an anti-diabetic protein, in transgenic sweet potato plants. J Plant Physiol 162:1169–1176CrossRefGoogle Scholar
  51. Triqui ZEA, Guédira A, Chlyah A, Chlyah H, Souvannavong V, Haïcour R, Sihachakr D (2008) Effect of genotype, gelling agent, and auxin on the induction of somatic embryogenesis in sweet potato (Ipomoea batatas Lam.). CR Biologies 331:198–205Google Scholar
  52. Wakita Y, Otani M, Hamada T, Mori M, Iba K, Shimada T (2001) A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweetpotato (Ipomoea batatas). Plant Cell Rep 20:244–249CrossRefGoogle Scholar
  53. Woolfe JA (1992) Sweetpotato, an untapped food resource. Cambridge University Press, New YorkGoogle Scholar
  54. Xing Y, Yang Q, Ji Q, Luo Y, Zhang Y, Gu K, Dengzhan (2007) Optimization of Agrobacterium-mediated transformation parameters for sweet potato embryogenic callus using β-glucuronidase (GUS) as a reporter. Afr J Biotechnol 6(22):2578–2584Google Scholar
  55. Xing YJ, Ji Q, Yang Q, Luo YM, Li Q, Wang X (2008) Studies on Agrobacterium-mediated genetic transformation of embryogenic suspension cultures of sweet potato. Afr J Biotechnol 7(5):534–540Google Scholar
  56. Yi G, Shin Y-M, Choe G, Shin B, Kim YS, Kim KM (2007) Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol Lett 29:669–675PubMedCrossRefGoogle Scholar
  57. Yu B, Zhai H, Wang Y, Zang N, He S, Liu Q (2007) Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.). Lam. Plant Cell Tiss Org Cult 90:265–273CrossRefGoogle Scholar
  58. Zhai H, Liu QC (2003) Studies on the genetic transformation of embryogenic suspension culture in sweet potato. Sci Agric Sinica 36:487–491Google Scholar
  59. Zheng Q, Dessai AP, Prakash CS (1996) Rapid and repetitive plant regeneration in sweet potato via somatic embryogenesis. Plant Cell Rep 15:381–385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nadia Anwar
    • 1
    • 3
    Email author
  • Kazuo N. Watanabe
    • 1
  • Junko A. Watanabe
    • 2
  1. 1.Gene Research Center, Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.BioNova InternationalTsukubaJapan
  3. 3.Plant Genome Research Unit, National Institute of Agrobiological Sciences (NIAS)TsukubaJapan

Personalised recommendations