Advertisement

Induction of somatic embryogenesis and plant regeneration in the tropical timber tree Spanish red cedar [Cedrela odorata L. (Meliaceae)]

  • Yuri J. Peña-RamírezEmail author
  • Israel García-Sheseña
  • Ángel Hernández-Espinoza
  • Alfredo Domínguez-Hernández
  • Felipe A. Barredo-Pool
  • José A. González-Rodríguez
  • Manuel L. Robert
Original Paper

Abstract

Spanish red cedar (Cedrela odorata L.) is a tropical timber tree native to the Americas from southern Mexico to northern Argentina. Commercial plantations are scarce and, consequently, natural populations are overexploited. Traditional propagation practices for the establishment of large-scale plantations have had limited success in this species due to the relative scarcity of seeds, its broad genetic diversity and the lack of domesticated varieties. In vitro clonal propagation provides an effective method to overcome this situation and increase the yield of commercial plantations through the rapid multiplication of elite materials. Somatic embryogenesis (SE) is one of the most promising strategies for tree propagation due to the possibility of producing artificial seeds, the ability to store and rapidly mobilize germplasm and the opportunity for genetic manipulation. We report here the induction of indirect SE in C. odorata from calli derived from immature zygotic embryos after 12 weeks of culture. Macroscopic, histological, and scanning electron microscopic analyses of the calli revealed the presence of embryogenic cell clusters that formed cotyledonary embryos with clear bipolar structures and no vascular connections with the mother tissue. Different media preparations containing combinations of diverse auxins and cytokinins are known to have different effects on the type and frequency of embryogenic structures. Embryo conversion was achieved using an MS-based medium [Murashige T, Skoog F (1962) Physiol Plant 15:473–497, 1962] supplemented with abscisic acid, and transfer to soil was successful at a rate of 75%. The method described here provides a basis for optimizing the clonal propagation and genetic manipulation of this valuable species.

Keywords

Clonal forestry Dicamba Indirect somatic embryogenesis 

Abbreviations

ABA

Abscisic acid

GA3

Gibberellic acid

IBA

Indolebutyric acid

IZE

Immature zygotic embryo

PGR

Plant growth regulator

SE

Somatic embryogenesis

Notes

Acknowledgments

We are indebted to CONACYT and CONAFOR for their financial support of this research through the project 10013-2003-CO3. ADH wishes to thank CONACYT for a student fellowship. IGS and AHE are grateful to ITSA, CICY and CONAFOR for their economic support of their research visits. YPR and JAGR wish to thank J. de Leon-Olarte, J. R. Baca-González, and G. Ramírez-Viveros their institutional support.

References

  1. Álvarez R, Ordás RJ (2007) Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell Tissue Organ Cult 91:45–52CrossRefGoogle Scholar
  2. Aquea F, Poupin MJ, Matus JT, Gebauer M, Medina C, Arce–Johnson P (2008) Synthetic seed production from somatic embryos of Pinus radiata. Biotechnol Lett 30:1847–1852PubMedCrossRefGoogle Scholar
  3. Bajaj YPS (1995) Somatic embryogenesis and its applications for crop improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 30: somatic embryogenesis and synthetic seeds I. Springer, New York, pp 105–119Google Scholar
  4. Blanc G, Michaux–Ferriere N, Teisson C, Lardet L, Carron MP (1999) Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell Tissue Organ Cult 59:103–112CrossRefGoogle Scholar
  5. Cavers S, Navarro C, Lowe AJ (2004) Targeting genetic resource conservation in widespread species: a case study of Cedrela odorata L. For Ecol Manage 197:285–294CrossRefGoogle Scholar
  6. Cornelius JP, Watt A (2003) Genetic variation in a Hypsipyla-attacked clonal trial of Cedrela odorata under two pruning regimes. For Ecol Manag 183(1–3):341–349CrossRefGoogle Scholar
  7. de la Torre A, López C, Yglesias E, Cornelius JP (2008) Genetic (AFLP) diversity of nine Cedrela odorata populations in Madre de Dios, southern Peruvian Amazon. For Ecol Manag 255(2):334–339CrossRefGoogle Scholar
  8. Finer JJ (1994) Plant regeneration via embryogenic suspension cultures. In: Dixon RA, Gonzales RA (eds) Plant cell culture. A practical approach. Oxford University Press, Oxford, pp 99–125Google Scholar
  9. Gonzalez–Rodríguez JA, Peña–Ramírez YJ (2007) Establishment of efficient protocols for massive propagation of tropical trees from Mesoamerica through somatic embryogenesis: Cedrela odorata, Swietenia macrophylla, Cybistax donellsmithii, Crescentia cujete and Cordia dodecandra. In: Proc 2nd IS Acclim Establish. Microprop Plants. Acta Hortic 748:229–234Google Scholar
  10. ITTO (2010) Tropical timber market report, vol 15. International Tropical Timber Organization, Yokohama, JapanGoogle Scholar
  11. IUCN (International Union for Conservation of Nature) (2004) Americas regional workshop on conservation and sustainable management of trees (Cedrela odorata) in IUCN red list of threatened species. Available at: http://www.redlist.org. Accessed 14 Aug, 2009
  12. Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110CrossRefGoogle Scholar
  13. Lamb AFA (1968) Fast growing timbers of the lowland tropics, no. 2 Cedrela odorata L. Commonwealth Forestry Institute, University of Oxford, OxfordGoogle Scholar
  14. Litz RE, Jarret RL (1991) Regeneración de plantas en el cultivo de tejidos: embriogénesis somática y organogénesis. In: Rocca WM, Mroginski LA (eds) Cultivo de tejidos en la agricultura: fundamentos y aplicaciones. Centro Internacional de Agricultura Tropical. Cali, Colombia, pp 143–171Google Scholar
  15. Longman KA (1993) Rooting cuttings of tropical trees. Tropical trees: propagation and planting manuals, vol 1. Commonwealth Science Council, LondonGoogle Scholar
  16. Maruyama E, Ishii K (1999) Somatic embryogenesis in big-leaf mahogany (Swietenia macrophylla king). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Forestry sciences. Kluwer, Dordrecht, p 355Google Scholar
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  18. Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90:1–8CrossRefGoogle Scholar
  19. Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656CrossRefGoogle Scholar
  20. Peña-Ramírez YJ, Juárez-Gómez J, Gómez-López L, Jerónimo-Pérez JL, García-Sheseña I, González-Rodríguez JA, Robert ML (2010) Multiple adventitious shoot formation in Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cell Dev Biol–Plant 46:149–160Google Scholar
  21. Pennington TD, Styles BT (1975) A generic monograph of the Meliaceae. Blumea 22(3):419–540Google Scholar
  22. Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep 21:208–213CrossRefGoogle Scholar
  23. Pullman GS, Johnson S (2002) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668CrossRefGoogle Scholar
  24. Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758PubMedGoogle Scholar
  25. Ravindra BM, Nataraja K (2007) Plant regeneration via somatic embryogenesis using secondary needles of mature trees of Pinus rouxburghii Sarg. Int J Bot 3(1):40–47CrossRefGoogle Scholar
  26. Rout GR (2005) In vitro somatic embryogenesis in callus cultures of Azadirachta indica A. Juss.—a multipurpose tree. J For Res 10:263–267CrossRefGoogle Scholar
  27. Shrikhande M, Thengane SR, Mascarenhas AF (1993) Somatic embryogenesis and plant regeneration in Azadirachta indica A. Juss In Vitro Cell Dev Biol 29:38–42CrossRefGoogle Scholar
  28. Titon M, Xavier A, Otoni WC, Motoike SY (2007) Efeito dos reguladores de crescimiento dicamba e picloram na embriogênese somática em Eucalyptus grandis. R Ávore, Viçosa–MG 31(3):417–426Google Scholar
  29. Uddin MR, Dinus RJ, Webb DT (1990) Effects of different carbohydrates on maturation of Pinus taeda somatic embryos. In: 7th Int Congress Plant Tissue Cell Culture. Abstract B–127. Amsterdam, p 272Google Scholar
  30. Vales T, Feng X, Ge L, Xu N, Cairney J, Pullman GS, Peter GF (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26:133–143PubMedCrossRefGoogle Scholar
  31. Vila SA, Rey HY, Mroginski LA (2007) Factors affecting somatic embryogenesis induction and conversion in “paradise tree” (Melia azedarach L.). J Plant Growth Regul 26:268–277CrossRefGoogle Scholar
  32. Vila SA, González HR, Rey HY, Mroginski LA (2009) Somatic embryogenesis and plant regeneration in Cedrela fissilis. Biol Plant 53:383–386CrossRefGoogle Scholar
  33. von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928Google Scholar
  34. Yildirim T, Kaya Z, Işik K (2006) Induction of embryogenic tissue and maturation of somatic embryos in Pinus brutia ten. Plant Cell Tissue Organ Cult 87:67–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yuri J. Peña-Ramírez
    • 1
    Email author
  • Israel García-Sheseña
    • 1
  • Ángel Hernández-Espinoza
    • 1
  • Alfredo Domínguez-Hernández
    • 2
  • Felipe A. Barredo-Pool
    • 2
  • José A. González-Rodríguez
    • 1
  • Manuel L. Robert
    • 2
  1. 1.Instituto Tecnológico Superior de AcayucanAcayucanMexico
  2. 2.Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations