Skip to main content
Log in

Plant regeneration using immature zygotic embryos of Tribulus terrestris

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The genus Tribulus is the source of a number of steroidal saponins and other bioactive compounds which are of medicinal and pharmaceutical importance and plant regeneration of Tribulus terrestris has been reported. The objective of this study was to evaluate the potential of immature zygotic embryos of Tribulus terrestris as an explant for plant regeneration. Embryos were cultured on MS medium supplemented with 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and thidiazuron (TDZ), alone or in combination and callus and shoot or embryo formation evaluated. With 2.5 mg/l NAA or 2,4-D, callus formation frequency was 100% but 57% with 2.5 mg/l TDZ. The combination of 2.5 mg/l TDZ and NAA or 2,4-D also elicited callus formation frequency of 100%. The callus formation frequency was lower with lower levels of these growth regulators. On a medium with 0.5 mg/l TDZ, 17.4% of the 2,4-D-derived callus (2.5 mg/l), developed embryo-like structures and this increased to 37.3 and 41.4% respectively, when TDZ was combined with 0.5 mg/l indole-3-butyric acid (IBA) or 2,4-D. Both shoot formation and embryo-like structures developed in cultures with 2.5 mg/l TDZ, alone or in combination with 0.5 mg/l IBA or 2,4-D. The optimum sucrose level for morphogenetic response of embryo-derived callus was between 5.0 and 7.5%. Embryo-like structures were also observed when the 2,4-D-derived callus was cultured in a liquid containing benzyladenine (BA) and IBA. Plants were regenerated from both embryo-like structures and shoot buds on solid MS medium containing 0.2 mg/l IBA and rooted plantlets were transferred to soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

NAA:

1-Naphthaleneacetic acid

2,4-D:

2,4 Dichlorophenoxyacetic acid

TDZ:

Thidiazuron

IBA:

Indolebutryic acid

MS:

Murashige and Skoog medium

B5:

Gamborg’s medium

BA:

Benzyladenine

PGR:

Plant growth regulator

References

  • Ali G, Mughal MH, Srivastava PS, Iqbal M (1997) Micropagation of Tribulus terrestris L.: an important medicinal plant. J Plant Biol 40:202–205

    Article  Google Scholar 

  • Babaoglu M, Yorgancilar M (2000) TDZ-specific plant regeneration in salad burnet. Plant Cell Tiss Org Cult 44:31–34

    Article  Google Scholar 

  • Bedir E, Khan IA (2000) New steroidal glycosides from the fruits of Tribulus terrestris. J Nat Prod 63:1699–1701

    Article  PubMed  CAS  Google Scholar 

  • Bela J, Shetty K (1999) Somatic embryogenesis in anise (Pimpinella anisum L.): the effect of proline on embryogenic callus formation and ABA on advanced embryo development. J Food Biochem 23:17–32

    Article  CAS  Google Scholar 

  • Bourke CA, Stevens GR, Carrigan MJ (1992) Locomotor effects in sheep of alkaloids identified in Australian Tribulus terrestris. Aust Vet J 69:163–165

    Article  PubMed  CAS  Google Scholar 

  • Bremmer J, Sengpracha W, Bourke C, Southwell I, Skelton B, White A (2005) The alkaloids of Tribulus terrestris: a revised structure. Acta Hort 677:11–17

    Google Scholar 

  • Cai L, Wu Y, Zhang J, Pei F, Xu Y, Xie S, Xu D (2001) Steroidal saponins from Tribulus terrestris. Planta Med 67:196–198

    Article  PubMed  CAS  Google Scholar 

  • Conrad J, Dinchev D, Klaiber I, Mika S, Kostova I, Kraus W (2004) A novel furostanol saponin from Tribulus terrestris of Bulgarian origin. Fitoterapia 75:117–122

    Article  PubMed  CAS  Google Scholar 

  • de-Combarieu E, Fuaaati N, Lovati M, Mercalli E (2003) Furostanol saponins from Tribulus terrestris. Fitoterapia 74:583–591

    Article  PubMed  CAS  Google Scholar 

  • Deepak M, Dipankar G, Prashanth D, Asha MK, Amit A, Venkataraman BV (2002) Tribulosin and beta-sitosterol-D-glucoside, the anthelmentic principles of Tribulus terrestris. Phytomedicine 9:753–756

    Article  PubMed  CAS  Google Scholar 

  • Dinchev D, Janda B, Evstatieva L, Oleszek W, Aslani MR, Kostova I (2008) Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochem 69:176–186

    Article  CAS  Google Scholar 

  • El-Tantaway WH, Hassanin LA (2007) Hypoglycemic and hypolipidemic effects of alcoholic extracts of Tribulus alata in Streptozotocin-induced diabetic rats: a comparative study with T. terrestris (Caltrop). Indian J Exptl Biol 45:785–790

    Google Scholar 

  • Erhun S, Sofowora A (1986) Callus induction and detection of metabolites in Tribulus terrestris L. J Plant Physiol 123:181–186

    CAS  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Reg 43:27–47

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Halperin W, Wetherell DF (1964) Adventive embryony in tissue cultures of wild carrot, Daucus carota. Amer J Bot 51:274–283

    Article  CAS  Google Scholar 

  • Hamed AI, Oleszek W, Stochmal A, Pizza C, Piacente S (2004) Steroidal saponins from the aerial parts of Tribulus terrestris Forssk. Phytochem 65:2935–2945

    Article  CAS  Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der pflanzen, vol 6. Birkenhauser, Basel, p 707

    Google Scholar 

  • Hong-Li WS, Yang SJ (2008) A triterpene saponin from Tribulus attenuates apoptosis in cardiocytes via activating PKC signaling transduction pathway. J Asian Natl Prod Res 10:39–48

    Article  Google Scholar 

  • Hu K, Yao X (2002) Protodioscin (nsc-698796): its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screening panel. Planta Med 68:297–301

    Article  PubMed  CAS  Google Scholar 

  • Hu K, Yao X (2003) The cytotoxicity of methyl protodioscin against human cancer cell lines in vitro. Cancer Invest 21:389–393

    Article  PubMed  CAS  Google Scholar 

  • Huang J-W, Tan C-H, Jaing S-H, Zhu D-Y (2003) Terrestrinins A and B, two new steroid saponins from Tribulus terrestris. J Asian Natl Prod Res 5:285–290

    Article  CAS  Google Scholar 

  • Jimenez V (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Reg 47:91–110

    Article  CAS  Google Scholar 

  • Jit S, Nag TN (1985) Antimicrobial principles from in vitro tissue culture of Tribulus alatus. Indian J Pharm Sci 47:101–103

    CAS  Google Scholar 

  • Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effects of sucrose concentration on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Scientia Hort 110:340–344

    Article  CAS  Google Scholar 

  • Kostova I, Dinchev D (2005) Tribulus terrestris- chemistry and bioactivity. Phytochem Rev 4:111–137

    Article  CAS  Google Scholar 

  • Manjkhola S, Dhar U, Joshi M (2005) Organogenesis, embryogenesis and synthetic seed production in Arnebia euchroma-a critically endangered medicinal plant of the Himilaya. In Vitro Cell Devel Biol-Plant. 41:244–248

    Article  Google Scholar 

  • Moghaddam BE, Meshbah M, Yavari N (2000) The effect of in planta TIBA and proline treatment on somatic embryogenesis of sugar beet (Beta vulgaris L.). Euphytica 112:151–156

    Article  CAS  Google Scholar 

  • Mohan JSS, Kumar VV, Aparna V, Vaidya RP (2000) Somatic embryogenesis and plant regeneration in Tribulus terrestris. L. Phytomorph 50:307–311

    Google Scholar 

  • Morrison SM, Scott JK (1996) Variation in populations of Tribulus terrestris (Zygophyllaceae). 2. Chromosome number. Aust J Bot 44:175–190

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neychev VK, Nikolova E, Zhelev N, Mitev VI (2006) Saponins from Tribulus terrestris L. are less toxic to normal human fibroblasts than for many cancer lines: influence on apoptosis and proliferation. Exp Biol Med 232:126–133

    Google Scholar 

  • Pandey R, Shankar BS, Sainis KB (2007) Tribulus terrestris fruit extract protects against oxidative stress-induced apoptosis. Pharm Biol 45:619–625

    Article  Google Scholar 

  • Perrone A, Plaza A, bloise E, nigro P, Hamed AI, Belisario MA, Pizza C, Piacente S (2005) Cytotoxic furostanol saponins and a megastigmane glucoside from Tribulus parvispinus. J Natl Prod 68:1549–1553

    Article  CAS  Google Scholar 

  • Phillips OA, Mathew KT, Oriowo MA (2006) Antihypertensive and vasodilator effects of methanolic and aqueous extracts of Tribulus terrestris in rats. J Ethnopharm 104:351–355

    Article  Google Scholar 

  • Raghavan V (2004) Role of 2, 4-dichlorophenoxyacetic acid 9 2, 4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling and morphogenesis during continuous exposure of embryos to 2, 4-D. Amer J Bot 91:1743–1756

    Article  CAS  Google Scholar 

  • Sarwat M, Das S, Srivastava PS (2008) Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep 27:519–528

    Article  PubMed  CAS  Google Scholar 

  • Sharifi AM, Darabi R, Akbarloo N (2003) Study of antihypertensive mechanism of Tribulus terrestris in 2K1C hypertensive rats: role of tissue ACE activity. Life Sci 73:2963–2970

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Sahoo L, Sarin NB, Jaiwal PK (2003) The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Mill sp). Plant Sci 164:341–347

    Article  CAS  Google Scholar 

  • Temraz A, El-Gindi OD, Kadry HA, De-Tommasi N, Braca A (2006) Steroidal saponins from the aerial parts of Tribulus alata Del. Phytochem 67:1011–1018

    Article  CAS  Google Scholar 

  • Xu Y-X, Chen H-S, Liang H-Q, Gu Z-B, Liu W-Y, Leung W-N, Li T-J (2000) Three new saponins from Tribulus terrestris. Planta Med 66:545–550

    Article  PubMed  CAS  Google Scholar 

  • Xu T-H, Xu Y-J, Xie S-X, Zhao H-F, Han D, Li Y, Niu J-Z, Xu D-M (2008) Two new furostanol saponins from Tribulus terrestris L. J Asian Natl Prod Res 10:419–423

    Article  CAS  Google Scholar 

  • Yan W, Ohtani K, Kasai R, Yamasaki K (1996) Steroidal saponins from fruits of Tribulus terrestris. Phytochem 42:1417–1422

    Article  CAS  Google Scholar 

  • Yu HJ, Oh SK, Oh MH, Chor DW, Kwon YM, Kim SG (1997) Plant regeneration from callus cultures of Lithospermum erythrorhizon. Plant Cell Rep 16:261–266

    CAS  Google Scholar 

  • Zafar R, Hague J (1990) Tissue culture studies on Tribulus terrestris L. Indian J Pharm Sci 52:102–103

    Google Scholar 

  • Zhang J-D, Cao Y-B, Xu Z, Sun H-H, An M-M, Yan L, Chen H-S, Gao P-H, Wang Y, Jia X-M, Jaing Y-Y (2005) In vitro and in vivo antifungal activities of eight steroid saponins from Tribulus terrestris L.with potent activity against fluconazole-resistant fungal. Biol Pharm Bull 28:2211–2215

    Article  PubMed  CAS  Google Scholar 

  • Zhang CL, Chen DF, Kubalakova M, Zhang J, Scott NW, Elliott MC, Slater A (2008) Efficient somatic embryogenesis in sugar beet (Beta vulgaris L.) breeding lines. Plant Cell Tiss Organ Cult 93:209–221

    Article  CAS  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the technical assistance of Keith Pahl, Prakash Venglat and Holly Kemp for their assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Don Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, C.D., Keller, W.A. Plant regeneration using immature zygotic embryos of Tribulus terrestris . Plant Cell Tiss Organ Cult 105, 121–127 (2011). https://doi.org/10.1007/s11240-010-9838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9838-x

Keywords

Navigation