Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 104, Issue 2, pp 157–162 | Cite as

Shoot organogenesis and somatic embryogenesis from leaf and shoot explants of Ochna integerrima (Lour)

  • Guohua MaEmail author
  • Jinfeng Lü
  • Jaime A. Teixeira da Silva
  • Xinhua Zhang
  • Jietang Zhao
Original paper


Ochna integerrima is a medicinal and ornamental plant in Southeastern Asia. It has been listed as a rare and endangered species in China. Here we studied the effects of plant growth regulators and their concentrations on the induction of somatic embryogenesis and shoot organogenesis from leaf and shoot explants of O. integerrima for the first time. Cytokinins played a crucial role in somatic embryogenesis and shoot organogenesis. Among them, a higher concentration of thidiazuron (10.0–15.0 μM TDZ) could induce both somatic embryogenesis and adventitious shoot formation whereas low concentrations of TDZ (5.0 μM) could only induce adventitious shoots. However, 6-benzyladenine (BA at 5–15 μM) could only induce adventitious shoots. Shoot explants induced more adventitious shoots and somatic embryos than leaf explants when cultured on medium with the same concentration (5–15 μM) of TDZ or 15 μM BA. Medium containing 0.5 μM α-naphthaleneacetic acid and 8 μM indole-3-butyric acid and 0.1% activated charcoal could induce adventitious roots within 1 month. An efficient mass propagation and regeneration system has been established.


Ochna integerrima TDZ Shoot organogenesis Somatic embryogenesis 



2,4-dichloro-phenoxyacetic acid




Indole-3-butyric acid


α-naphthaleneacetic acid




  1. Brickell C, Zuk JD (1997) The American Horticultural Society, A–Z encyclopedia of garden plants. DK Publishing, Inc, New YorkGoogle Scholar
  2. Çöçü S, Uranbey S, İpek A, Khawar KM, Sarihan EO, Kaya MD, Parmaksiz İ, Özcan S (2004) Adventitious shoot regeneration and micropropagation in Calendula officinalis L. Biol Plant 48:449–451CrossRefGoogle Scholar
  3. De Vries SC, Booij H, Meyerink P, Huisman G, Wilde HD, Thomas TL, Van Kammen A (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176:196–204CrossRefGoogle Scholar
  4. Dolendro S, Lingaraj S, Neera BS, Pawan KJ (2003) The effect of TDZ on organogenesis and somatic embryogenesis in pigeon pea Cajanus cajan L. Millsp. Plant Sci 164:341–347CrossRefGoogle Scholar
  5. Faisal M, Ahmad N, Anis M (2005) Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tiss Organ Cult 80:187–190CrossRefGoogle Scholar
  6. Fiola JA, Hassan MA, Swain HJ, Bors RH, McNicols R (1990) Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell Tiss Organ Cult 22:223–228CrossRefGoogle Scholar
  7. Gulshan C, Darshna C, Madan V, Manish S, Pawan KJ (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plants 14:347–353CrossRefGoogle Scholar
  8. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Organ Cult 33:105–119CrossRefGoogle Scholar
  9. Jones MP, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490CrossRefPubMedGoogle Scholar
  10. Kaewamatawong R, Likhitwitayawuid K, Ruangrungsi N, Takayama H, Kitajima M, Aimi N (2002) Novel biflavonoids from the stem bark of Ochna integerrima. J Nat Prod 65:1027–1029CrossRefPubMedGoogle Scholar
  11. Kamil M, Khan NA, Ilyas M, Rahman W (1983) Biavones from Ochnaceae, a new biavone from Ochna pumila. Indian J Chem 22B:608Google Scholar
  12. Kamil M, Khan NA, Alam MS, Ilyas M (1987) A biavone from Ochna pumila. Phytochemistry 26:1171–1173CrossRefGoogle Scholar
  13. Kittisak L, Rungruedee R, Nijsiri R, Thatree P (2001) Flavonoids from Ochna integerrima. Phytochemistry 56:353–357CrossRefGoogle Scholar
  14. Likhitwitayawuid K, Rungserichai R, Ruangrungsi N, Phadungcharoen T (2001) Flavonoids from Ochna integerrima. Phytochemistry 56:353–357CrossRefPubMedGoogle Scholar
  15. Ma GH, Wu GJ (2006) Direct shoot organogenesis from cotyledon of Ochna integerrima Lour. Prop Ornamental Plants 6:145–148Google Scholar
  16. Ma GH, Xu QS (2002) Induction of somatic embryogenesis and adventitious shoot formation from immature leaves of cassava. Plant Cell Tiss Organ Cult 70:281–288CrossRefGoogle Scholar
  17. Ma GH, Wu GJ, Bunn E (2007) Somatic embryogenesis and adventitious shoot formation in Burma reed (Neyraudia arundinacea Henr.). In Vitro Cell Dev Biol Plant 43:16–20CrossRefGoogle Scholar
  18. Ma GH, He CX, Ren H, Zhang QM, Li SJ, Zhang XH, Bunn E (2010) Direct somatic embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum. Biol Plant 54:361–365CrossRefGoogle Scholar
  19. Malik KA, Saxena PK (1992) Thidiazuron induces high frequency shoot regeneration in intact seedlings of Pea (Pisum sativum) and lentil (Lens culinaris). Aust J Plant Physiol 19:731–740CrossRefGoogle Scholar
  20. Messanga BB, Tih RG, Kimbu SF, Sondengam BL, Martin MT, Bodo B (1992) Calodenone, a new isobiavonoid from Ochna calodendron. J Nat Prod 55:245–248CrossRefGoogle Scholar
  21. Messanga BB, Tih RG, Sondengam BL, Martin MT, Bodo B (1994) Biavonoids from Ochna calodendron. Phytochemistry 35:791–794CrossRefGoogle Scholar
  22. Messanga BB, Sondengam BL, Bodo B (2000) Calodendroside A: a taxifolin diglucoside from the stem bark of Ochna calodendro. Canadian J Chem 78:487–489CrossRefGoogle Scholar
  23. Mithila J, Hall JC, Victor JM, Saxena PK (2003) Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl). Plant Cell Rep 21:408–414PubMedGoogle Scholar
  24. Mohammad F, Taufeeq HM, Ilyas M, Rahman W, Chopin J (1982) Glycosyl avones from Ochna squarrosa. Indian J Chem 21B:167Google Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  26. Murch SJ, Saxena PK (2001) Molecular fate of thidiazuron and its effects on auxin transport in hypocotyls tissues of Pelargonium × hortorum Bailey. Plant Growth Regul 35:269–275CrossRefGoogle Scholar
  27. Perry LM (1980) Medicinal plants of East and Southeast Asia. The MIT Press, MassachusettsGoogle Scholar
  28. Raghavan V (2004) Role of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2, 4-D. Amer J Bot 91:1743–1756CrossRefGoogle Scholar
  29. Rao KV, Sreeramulu K, Rao CK, Gunasekar D, Martin MT, Bodo B (1997) Two new biavonoids from Ochna obtusata. J Nat Prod 60:632–634CrossRefGoogle Scholar
  30. Rendle AB (1952) The classification of flowering plants, vol. 2. Cambridge University Press, CambridgeGoogle Scholar
  31. Sibanda S, Nyanyira C, Nicoletti M, Galeffi C (1990) Ochna bianthrone: a trans-9, 90-bianthrone from Ochna pulchra. Phytochemistry 29:3974–3976CrossRefGoogle Scholar
  32. Sibanda S, Nyanyira C, Nicoletti M, Galeffi C (1993) Vismiones L and M from Ochna pulchra. Phytochemistry 34:1650–1652CrossRefGoogle Scholar
  33. Victor JMR, Murthy BNS, Murch SJ, Krishnaraj S, Saxena PK (1999) Role of endogenous purine metabolism in thidiazuron-induced somatic embryogenesis of peanut (Arachis hypogaea L.). Plant Growth Regul 28:41–47CrossRefGoogle Scholar
  34. Williams CA, Grayer R (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573CrossRefPubMedGoogle Scholar
  35. Xing FW (ed) (2005) Rare plants of China. Hunan education publisher, ChangshaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Guohua Ma
    • 1
    Email author
  • Jinfeng Lü
    • 1
    • 2
  • Jaime A. Teixeira da Silva
    • 3
  • Xinhua Zhang
    • 1
  • Jietang Zhao
    • 1
  1. 1.Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical Garden, The Chinese Academy of SciencesGuangzhouChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Faculty of Agriculture and Graduate School of AgricultureKagawa UniversityKagawa-kenJapan

Personalised recommendations