Skip to main content

Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production

Abstract

An isolated microspore culture provides an excellent system for the study of microspore induction and embryogenesis, provides a platform for an ever-increasing array of molecular studies, and can produce doubled haploid (DH) plants, which are used to accelerate plant-breeding programs. Moreover, isolated microspore cultures have several advantages over anther culture, wherein presence of the anther walls can lead to the development of diploid, somatic calli and plants. Although protocols for isolated microspore culture vary from laboratory to laboratory, the basic steps of growing donor plants, harvesting floral organs, isolating microspores, culturing and inducing microspores, regenerating embryos, and doubling the chromosomes, remain the same. Over the past few years, a large proportion of the research reports on isolated microspore culture have focused on cereal and Brassica species. For some of these species, isolated microspore culture protocols are well established and routinely used in laboratories around the world for developing new varieties, as well as for basic research in areas such as genomics, gene expression, and genetic mapping. Although these species are considered highly responsive to microspore culture, improvements in efficiency are still being made. However, with many species, isolated microspore culture is simply not yet efficient enough at producing DH plants to be cost-effective for breeding programs. There has been a recent resurgence of haploidy research with response being reported in some species once considered recalcitrant. Future research programs aimed at elucidating pathways involved in microspore induction and embryogenesis will be of benefit, as will novel approaches to improve the efficiency of microspore culture for DH production. With many species, anther culture has proven to be more effective than isolated microspore culture, necessitating more research to clarify the contribution of the anther wall to embryogenesis. The development of molecular markers for use in determining the gametic origin of regenerated plants, irrespective of their ploidy, would also be beneficial. In this review, we aim to provide an overview of the basic isolated microspore culture protocol with an emphasis on recent progress in several crop species.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Agarwal P, Agarwal P, Custers J, Liu CM, Bhojwani S (2006) PCIB an antiauxin enhances microspore embryogenesis in microspore culture of Brassica juncea. Plant Cell Tiss Organ Cult 86:201–210

    CAS  Article  Google Scholar 

  • Almouslem AB, Jauhar PP, Peterson TS, Bommineni VR, Rao MB (1998) Haploid durum wheat production via hybridization with maize. Crop Sci 38:1080–1087

    Article  Google Scholar 

  • Bayliss KL, Wroth JM, Cowling WA (2004) Pro-embryos of Lupinus spp. produced from isolated microspore culture. Aust J Agric Res 55:589–593

    Article  Google Scholar 

  • Belmonte MF, Ambrose SJ, Ross ARS, Abrams SR, Stasolla C (2006) Improved development of microspore-derived embryo cultures of Brassica napus cv Topaz following changes in glutathione metabolism. Physiol Plant 127:690–700

    CAS  Article  Google Scholar 

  • Bohanec B (2003) Ploidy determination using flow cytometry. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrechts, pp 397–403

    Google Scholar 

  • Bruins MBM, Rakoczy-Trojanowska M, Snijders CHA (1996) Isolated microspore culture in wheat (Triticum aestivum L.): the effect of co-culture of wheat or barley ovaries on embryogenesis. Cereal Res Commun 24:401–408

    Google Scholar 

  • Bueno MA, Pintos B, Höfer M, Martin A (2005) Pro-embryos induction from Olea europaea L. isolated microspore culture. Acta Physiol Plant 27:695–701

    Article  Google Scholar 

  • Cistue L, Soriano M, Castillo AM, Valles MP, Sanz JM, Echavarri B (2006) Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 25:257–264

    CAS  Article  PubMed  Google Scholar 

  • Cistue L, Romagosa I, Batlle F, Echavarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28:727–735

    CAS  Article  PubMed  Google Scholar 

  • Coumans M, Zhong D (1995) Doubled haploid sunflower (Helianthus annuus) plant production by androgenesis: fact or artifact? Part 2. In vitro isolated microspore culture. Plant Cell Tiss Organ Cult 41:203–209

    CAS  Article  Google Scholar 

  • Croser JS, Lülsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25:139–157

    Article  Google Scholar 

  • da Silva Dias JC (2001) Effect of incubation temperature regimes and culture medium on broccoli microspore culture embryogenesis. Euphytica 119:389–394

    Article  Google Scholar 

  • Dahleen LS (1999) Donor-plant environment effects on regeneration from barley embryo-derived callus. Crop Sci 39:682–685

    Article  Google Scholar 

  • Davies PA (2003) Barley isolated microspore culture (IMC) method. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 49–52

    Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    CAS  Article  PubMed  Google Scholar 

  • Echavarri BA, Soriano M, Cistué L, Vallés M, Castillo A (2008) Zinc sulphate improved microspore embryogenesis in barley. Plant Cell Tiss Organ Cult 93:295–301

    CAS  Article  Google Scholar 

  • Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6x triticale cultivars. Plant Cell Tiss Organ Cult 82:233–241

    CAS  Article  Google Scholar 

  • Fan Z, Holbrook L, Keller WA (1987) Isolation and enrichment of embryogenic microspores in Brassica napus L. by fractionation using percoll density gradients. 7th International Rapeseed Congress, Poznan, Poland, 11–14 May 1987

  • Fan Z, Armstrong KC, Keller WA (1988) Development of microspores in vivo and in vitro in Brassica napus L. Protoplasma 147:191–199

    Article  Google Scholar 

  • Ferrie AMR (2007) Doubled haploid production in nutraceutical species: a review. Euphytica 158:347–357

    Article  Google Scholar 

  • Ferrie AMR (2009) Current status of doubled haploids in medicinal plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science + Business Media, B.V, pp 209–218

  • Ferrie AMR, Keller WA (1995) Microspore culture for haploid plant production. In: Gamborg OL, Phillips GC (eds) Plant cell, tissue and organ culture. Fundamental methods. Springer, Berlin, pp 155–164

    Google Scholar 

  • Ferrie AMR, Keller WA (2007) Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in the Brassicaceae. In Vitro Cell Dev Biol Plant 43:348–355

    CAS  Article  Google Scholar 

  • Ferrie AMR, Epp DJ, Keller WA (1995) Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep 14:580–584

    CAS  Article  Google Scholar 

  • Ferrie AMR, Bethune T, Kernan Z (2005a) An overview of preliminary studies on the development of doubled haploid protocols for nutraceutical species. Acta Physiol Plant 27:735–741

    Article  Google Scholar 

  • Ferrie AMR, Dirpaul J, Krishna P, Krochko J, Keller WA (2005b) Effects of brassinosteroids on microspore embryogenesis in Brassica species. In Vitro Cell Dev Biol Plant 41:742–745

    CAS  Article  Google Scholar 

  • Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Organ Cult 86:131–146

    Article  Google Scholar 

  • Haddadi P, Moieni A, Karimzadeh Gh, Abdollahi MR (2008) Effects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704. Int J Plant Prod 2:153–162

    CAS  Google Scholar 

  • Höfer M (2004) In vitro androgenesis in apple–improvement of the induction phase. Plant Cell Rep 22:365–370

    Article  PubMed  Google Scholar 

  • Höfer M (2005) Regeneration of androgenic embryos in apple (Malus × domestica Borkh.) via anther and microspore culture. Acta Physiol Plant 27:709–716

    Article  Google Scholar 

  • Huang B, Bird S, Kemble R, Miki B, Keller W (1991) Plant regeneration from microspore-derived embryos of Brassica napus: Effect of embryo age, culture temperature, osmotic pressure, and abscisic acid. In Vitro Cell Dev Biol 27P:28–31

    CAS  Google Scholar 

  • Hunter CP (1988) Plant regeneration from microspores of barley, Hordeum vulgare L. Ph.D. Thesis. Wye College, University of London, London

  • Iqbal MCM, Wijesekara KB (2007) A brief temperature pulse enhances the competency of microspores for androgenesis in Datura metel. Plant Cell Tiss Organ Cult 89:141–149

    Article  Google Scholar 

  • Jacquard C, Nolin F, Hecart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clément C (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28:1329–1339

    CAS  Article  PubMed  Google Scholar 

  • Joersbo M, Jørgensen RB, Olesen P (1990) Transient electropermeabilization of barley (Hordeum vulgare L.) microspores to propidium iodide. Plant Cell Tiss Organ Cult 23:125–129

    CAS  Article  Google Scholar 

  • Kahrizi D, Mohammadi R (2009) Study of androgenesis and spontaneous chromosome doubling in barley (Hordeum vulgare L.) genotypes using isolated microspore culture. Acta Agron Hung 57:155–164

    Article  Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385

    Article  Google Scholar 

  • Kasha KJ, Simion E, Miner M, Letarte J, Hu TC (2003a) Haploid wheat isolated microspore culture protocol. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 77–81

    Google Scholar 

  • Kasha KJ, Simion E, Oro R, Shim YS (2003b) Barley isolated microspore culture protocol. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 43–47

    Google Scholar 

  • Kernan Z, Ferrie AMR (2006) Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria viccaria). Plant Cell Rep 25:274–280

    CAS  Article  PubMed  Google Scholar 

  • Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434

    CAS  Article  PubMed  Google Scholar 

  • Kiviharju E, Puolimatka M, Saastamoinen M (2000) Extension of anther culture to several genotypes of cultivated oats. Plant Cell Rep 19:674–679

    CAS  Article  Google Scholar 

  • Kiviharju E, Moisander S, Laurila J (2005) Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tiss Organ Cult 81:1–9

    CAS  Article  Google Scholar 

  • Labbini Z, De Buyser J, Picard E (2007) Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in Triticum turgidum ssp. durum cv. ‘Jennah Khetifa’. Plant Breeding 126:565–568

    Article  Google Scholar 

  • Lantos C, Páricsi S, Zofajova A, Weyen J, Pauk J (2006) Isolated microspore culture of wheat (Triticum aestivum L.) with Hungarian cultivars. Acta Biol Szeged 50:31–35

    Google Scholar 

  • Lantos C, Juhasz AG, Somogyi G, Otvos K, Vagi P, Mihaly R, Kristof Z, Somogyi N, Pauk J (2009) Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell Tiss Organ Cult 97:285–293

    Article  Google Scholar 

  • Laurain D, Trémouillaux-Guiller J, Chénieux J (1993) Embryogenesis from microspores of Ginkgo biloba L., a medicinal woody species. Plant Cell Rep 12:501–505

    Google Scholar 

  • Leskovšek L, Jakše M, Bohanec B (2008) Doubled haploid production in rocket (Eruca sativa Mill.) through isolated microspore culture. Plant Cell Tiss Organ Cult 93:181–189

    Article  Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698

    CAS  Article  PubMed  Google Scholar 

  • Li H, Devaux P (2001) Enhancement of microspore culture efficiency of recalcitrant barley genotypes. Plant Cell Rep 20:475–481

    CAS  Article  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z. Pflanzenphysiol 105:427–434

    Google Scholar 

  • Liu W, Zheng MY, Polle EA, Konzak CF (2002) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692

    Article  Google Scholar 

  • Lu R, Wang Y, Sun Y, Shan L, Chen P, Huang J (2008) Improvement of isolated microspore culture of barley (Hordeum vulgare L.): the effect of floret co-culture. Plant Cell Tiss Organ Cult 93:21–27

    Article  Google Scholar 

  • Maluszynska J (2003) Cytogenetic tests for ploidy level analyses–chromosome counting. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 391–395

    Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht

    Google Scholar 

  • Maraschin SF, Lamers GEM, de Pater BS, Spaink HP, Wang M (2003) 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. J Exp Bot 54:1033–1043

    CAS  Article  Google Scholar 

  • Nichterlein K, Friedt W (1993) Plant regeneration from isolated microspores of linseed (Linum usitatissimum L.). Plant Cell Rep 12:426–430

    CAS  Article  Google Scholar 

  • Nitsch C (1974) La culture de pollen isolé sur mileu synthétique. C R Acad Sci Paris 278:1031–1034

    CAS  Google Scholar 

  • Obert B, Žáčková Z, Šamaj J, Pret’ová A (2009) Doubled haploid production in flax (Linum usitatissium L.). Biotechnol Adv 27:371–375

    CAS  Article  PubMed  Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry 73A:581–598

    CAS  Article  Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    CAS  Article  PubMed  Google Scholar 

  • Patel M, Darvey NL, Marshall DR, Berry JO (2004) Optimization of culture conditions for improved plant regeneration efficiency from wheat microspore culture. Euphytica 140:197–204

    CAS  Article  Google Scholar 

  • Prem D, Gupta K, Gautam S, Agnihotri A (2008) Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tiss Organ Cult 93:269–282

    CAS  Article  Google Scholar 

  • Rines HW (2003) Oat haploids from wide hybridization. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 155–159

    Google Scholar 

  • Rines HW, Dahleen LS (1990) Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Sci 30:1073–1078

    Article  Google Scholar 

  • Segui-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58:1119–1132

    CAS  Article  PubMed  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    CAS  Article  Google Scholar 

  • Sidhu PK, Davis PA (2009) Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep 28:571–577

    CAS  Article  PubMed  Google Scholar 

  • Soriano M, Cistué L, Castillo AM (2007a) Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27:805–811

    Article  Google Scholar 

  • Soriano M, Cistué L, Vallés MP, Castillo AM (2007b) Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell Tiss Organ Cult 91:225–234

    CAS  Article  Google Scholar 

  • Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10

    CAS  Article  PubMed  Google Scholar 

  • Thomas WTB, Forster BP, Gertsson B (2003) Doubled haploids in breeding. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 337–349

    Google Scholar 

  • Tian H, Yao CY, Sun MX (2004) High frequency conversion of microspore-derived embryos of Brassica napus cv. Topas by supplemental calcium and vitamins. Plant Cell Tiss Organ Cult 76:159–165

    CAS  Article  Google Scholar 

  • Touraev A, Vincente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci Rev 2:297–302

    Article  Google Scholar 

  • Touraev A, Forster BP, Jain SM (2009) Advances in haploid production in higher plants. Springer, Berlin

    Book  Google Scholar 

  • Wolyn DJ, Nichols B (2003) Asparagus microspore and anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 265–273

    Google Scholar 

  • Zeng X, Wen J, Wan Z, Yi B, Shen J, Ma C, Tu J, Fu T (2010) Effects of bleomycin on microspore embryogenesis in Brassica napus and detection of somaclonal variation using AFLP molecular marker. Plant Cell Tiss Organ Cult 101:23–29

    CAS  Article  Google Scholar 

  • Zheng MY, Weng Y, Liu W, Konzak CF (2002) The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.). Plant Cell Rep 20:802–807

    CAS  Article  Google Scholar 

  • Ziauddin A, Simion E, Kasha KJ (1990) Improved plant regeneration from shed microspore culture in barley (Hordeum vulgare L.) cv. Igri. Plant Cell Rep 9:69–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. R. Ferrie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrie, A.M.R., Caswell, K.L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Organ Cult 104, 301–309 (2011). https://doi.org/10.1007/s11240-010-9800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9800-y

Keywords

  • Isolated microspore culture
  • Microspore embryogenesis
  • Protocol development