Skip to main content
Log in

Are polyamines directly involved in silymarin production in the milk thistle [Silybum marianum (L.) Gaernt]?

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The possible role of polyamines (PAs) in the regulation of silymarin (Sm) production in milk thistle [Silybum marianum (L.) Gaernt] cell suspension cultures was studied in a young cell culture line (H2 line) and in a synchronized cell line (>3 years; H1 line). The effect of two exogenous PAs, putrescine (Put) and spermidine (Spd), and a number of metabolic inhibitors (L-canavanine, DL-α-difluoromethylornithine, methylglyoxal-bis-guanylhydrazone, cyclohexylamine) on the production of Sm during the growth cycle were analyzed. The results suggest that PAs are not directly involved in the Sm synthesis pathway. In our cell culture system, Sm production and PA contents were determined by the age of the suspension culture cells: with increasing age, the suspension culture cells showed a decreasing capacity to reach the stationary phase during prolonged subculture that was associated with a decreased production of Sm, a steady increase in PA content, and a constant Put/Spd ratio. The synchronization of dividing cells from the S. marianum H1 line did not modify this behaviour. In young cell suspensions, maximum Sm production occurred in the stationary phase, concurrent with the cellular PA contents reaching their minimum value. At the start of the stationary phase, the high percentage of cells in the growth phases (G0/G1) and a transient increase in the Put/Spd ratio were accompanied by maximum Sm production and a blockade of cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CHA:

Cyclohexylamine

DFMA:

DL-α-Difluoromethylarginine

DFMO:

DL-α-Difluoromethylornithine

DHP:

1-7 Diaminoheptane

LC:

L-Canavanine

MGBG:

Methylglyoxal-bis-guanylhydrazone

PAs:

Polyamines

PCA:

Perchloric acid

PH:

Fraction pellet-hydrolysed

Put:

Putrescine

S:

Fraction soluble

SH:

Fraction soluble-hydrolysed

Sm:

Silymarin

Spd:

Spermidine

Spm:

Spermine

References

  • Alcazar R, Altabella T, Tiburcio AF (2003) Las Poliaminas. In: Reigosa MJ, Pedrol N, Sánchez-Moreiras A (eds) La Ecofisiología Vegetal: Una Ciencia de Síntesis. Thomson Editores Spain, Paraninfo S.A., Madrid, pp 725–748

  • Bais HP, Sudha G, Ravishankar GA (1999) Putrescine influences growth and production of coumarins in hairy root cultures of Cichorium intybus, L. cv. Lucknow local (Witloof Chicory). J Plant Growth Regul 18:159–165

    Article  CAS  PubMed  Google Scholar 

  • Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242

    Article  CAS  PubMed  Google Scholar 

  • Cacho M (1991) Cultivos in vitro de ápices caulinares y hojas de Digitalis thapsi L.: micropropagación, morfogénesis y producción de cardenólidos. PhD thesis. Universidad de Salamanca, Salamanca

  • Cacho M, Moran M, Fernández-Tarrago J, Corchete P (1999) Influence of medium composition on the accumulation of flavonolignans in cultured cells of Silybum marianum (L.) Gaertn. Plant Sci 144(2):63–68

    Article  CAS  Google Scholar 

  • Carnevalli LL (2006) Influência do etileno e de poliaminas sobre a morfogênese in vitro do maracujá (Passiflora sp.). PhD thesis. Universidade Federal de Viçosa, Viçosa

  • Cuq F, Brown SC, Petitprez M, Alibert G (1995) Effects of monocerin on cell cycle progression in maiz root meristems synchronized with aphidicolin. Plant Cell Rep 15:138–142

    Article  CAS  Google Scholar 

  • Cvikrová M, Binarová P, Eder J, Vágner M, Hrubcová M, Zón J, Macháčková I (1999) Effect of inhibition of phenylalanine ammonia-lyase activity on growth of alfalfa cell suspension culture: alterations in mitotic index, ethylene production, and contents of phenolics, cytokinins, and polyamines. Physiol Plant 107:329–337

    Article  Google Scholar 

  • Darzynkiewicz Z, Juan G (1997) DNA content measurement for DNA ploidy and cell cycle analysis. In: Robinson P, Darzynkiewicz Z, Dean P, Orfao A, Rabinovitch P, Stewart C, Tanke H, Wheeless L (eds) Current protocols in cytometry. Wiley-Liss, New York, pp 751–752

    Google Scholar 

  • Dolezel J, Sgorbati S, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Article  Google Scholar 

  • Egea-Cortines M, Mizrahi Y (1991) Polyamines in cells division, fruit set and development, and seed germination. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 143–158

    Google Scholar 

  • Feixa X (2001) Poliaminas y tolerancia al aluminio en variedades tolerantes y sensibles de Zea mays. PhD thesis. Universitat Autònoma de Barcelona, Barcelona

  • Flora K, Hahn M, Rosen H, Benner K (1998) Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 93:139–143

    Article  CAS  PubMed  Google Scholar 

  • Gemperlová L, Eder J, Cvikrová M (2005) Polyamine metabolism during the growth of tobacco BY-2 cells. Plant Physiol Biochem 43:375–381

    PubMed  Google Scholar 

  • Giese LA (2001) Milk thistle and the treatment hepatitis. Gastroenterol Nurs 24:95–97

    Article  CAS  PubMed  Google Scholar 

  • Jorge Carmona A (1997) Contribución al conocimiento del papel de las poliaminas en el desarrollo del fruto de la platanera: estudio de las implicaciones fisiológicas de estas sustancias sobre el crecimiento in vitro de los tejidos del ovario. PhD thesis. Universidad de la Laguna, Canarias

  • Liu JH, Moriguchi T (2007) Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Rep 26:125–131

    Article  CAS  PubMed  Google Scholar 

  • Marcé M, Brown DS, Capell T, Figueras X, Tiburcio AF (1995) Rapid high performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: application to plant and animal tissues. J Chromatogr B666:329–335

    Google Scholar 

  • Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol Plant 100:675–688

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent developments and new approaches. Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Martin-Tanguy J, Carre M (1993) Polyamines in grapevine microcuttings cultivated in vitro. Effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul 13:269–280

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nicoloso FT, Val J, van der Keur M, van Iren F, Kijne JW (1994) Flow-cytometric cell counting and DNA estimation for the study of plant cell population dynamics. Plant Cell Tissue Organ 39:251–259

    Article  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005a) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152

    Article  CAS  PubMed  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005b) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol 138:2174–2184

    Article  CAS  PubMed  Google Scholar 

  • Pedrol N, Tiburcio AF (2001) Polyamines determination by TLC and HPLC. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer, Dordrecht, pp 335–364

    Google Scholar 

  • Post-White J, Ladas EJ, Kelly KM (2007) Advances in the use of milk thistle (Silybum marianum). Integr Cancer Ther 6(2):104–109

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy K, Agarwal R (2008) Multitargeted therapy of cancer silymarin. Cancer Lett 269(2):352–362

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Sampedro MA (2006) Producción de silimarina en cultivos celulares de Sylibum marianum L. (Gaertn). PhD thesis. Universidad de Salamanca, Salamanca

  • Sánchez-Sampedro MA, Fernández-Tarrago J, Corchete P (2005a) Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 119(1):60–69

    Article  PubMed  Google Scholar 

  • Sánchez-Sampedro MA, Fernández-Tarrago J, Corchete P (2005b) Enhanced silymarin accumulation is related to calcium deprivation in cell suspension cultures of Silybum marianum (L.) Gaertn. J Plant Physiol 162(10):1177–1182

    Article  Google Scholar 

  • Sánchez-Sampedro MA, Fernández-Tarrago J, Corchete P (2009) Elicitation of silymarin in cell cultures of Silybum marianum: effect of subculture and repeated addition of methyl jasmonate. Biotechnol Lett 31:1633–1637

    Article  PubMed  Google Scholar 

  • Shoeb F, Yadav JS, Bajaj S, Rajam MV (2001) Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in diffrent genotypes of indica rice. Plant Sci 160:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Smith TA, Davies PJ (1997) Monitoring polyamines in plant tissues by high performance liquid chromatography. In: Linskens HF, Jackson JF (eds) High performance liquid chromatography in plant sciences (Modern methods of plant analysis. New series), vol 5. Springer, Berlin, pp 209–227

    Google Scholar 

  • Sudha G, Ravishankar GA (2002) Involvement and interaction of various signalling compounds on the plant metabolic events during defense response, resistance to the stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ 71:181–212

    Article  CAS  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicicum frutescens. J Plant Physiol 160(4):339–346

    Article  CAS  PubMed  Google Scholar 

  • Wildhom JM (1972) The use of fluoresceine diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish grant of the Ministerio de Ciencia y Tecnología (MCYT) Plan Nacional del I + D+I and FEDER funds. (Ref: BF12000-1362). We are very grateful to Patrick M. Woster, PhD (Wayne State University, USA) for his kind gift of the DFMO product.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Cacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacho, M., Torres Domínguez, A. & Elena-Rosselló, JA. Are polyamines directly involved in silymarin production in the milk thistle [Silybum marianum (L.) Gaernt]?. Plant Cell Tiss Organ Cult 103, 361–368 (2010). https://doi.org/10.1007/s11240-010-9789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9789-2

Keywords

Navigation