Skip to main content
Log in

Nitric oxide promotes in vitro organogenesis in Linum usitatissimum L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The effects of nitric oxide (NO) on caulogenesis, shoot organogenesis and rhizogenesis from hypocotyl explants of Linum usitatissimum were investigated. Exogenously supplied NO donors, 5 μM sodium nitroprusside (SNP), 2 μM S-nitroso-N-acetylpenicillamine (SNAP) and 2 μM 3-morpholinosydnonimine (SIN-1), significantly promoted shoot differentiation from the hypocotyl explants of L. usitatissimum excised from its in vitro raised seedlings. Potassium ferrocyanide, a structural analogue of SNP, lacking NO group, did not promote shoot organogenesis. Likewise, products of NO, \( {\text{NO}}_{2}^{ - } \) and \( {\text{NO}}_{3}^{ - } \) supplied as 5 μM NaNO2 and 5 μM NaNO3 did not enhance shoot differentiation. Another source of NO, a mixture of sodium nitrite (SN) provided along with ascorbic acid (AsA), also caused significant promotion in the average number of shoots per responding explant. SNP also augmented the rhizogenic response of the microshoots in terms of percentage of responding explants, number of roots per responding explant and average root length. The NO scavengers, 2-(4-carboxy-phenyl)-4, 4, 5, 5-tetramethylimideazoline-1-oxyl-3-oxide (cPTIO) or methylene blue (MB), provided along with SNP, SNAP, SIN-1 or SN + AsA, at concentrations equimolar to the optimum concentration of the donors, reversed the promotory influence, thereby, confirming the role of NO in promotion of in vitro morphogenesis. However, NO scavengers individually did not affect the observed morphogenic processes. Morphological and histological studies of hypocotyl segments cultured on BM or BM + SNP for 4, 8 and 12 days demonstrated that SNP enhanced shoot differentiation by inducing a higher number of shoot primordia, each of which develops into a single shoot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Reinöhl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  CAS  PubMed  Google Scholar 

  • Dedičová B, Hricová A, Šamaj J, Obert B, Bobák M, Preto’vá A (2000) Shoot and embryo-like structures regenerated from cultured flax (Linum usitatissimum L.) hypocotyl segments. J Plant Physiol 157:327–334

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock T, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  CAS  PubMed  Google Scholar 

  • Gabaldón C, Ros LVG, Pedreño MA, Barceló AR (2005) Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 165:121–130

    Article  PubMed  Google Scholar 

  • Gamborg OL, Shyluk JP (1976) Tissue culture, protoplasts and morphogenesis in flax. Bot Gaz 137:301–306

    Article  Google Scholar 

  • Giba Z, Grubišić D, Todorović S, Sajc L, Stojaković D, Konjević R (1998) Effect of nitric oxide–releasing compounds on phytochrome–controlled germination of empress tree seeds. Plant Growth Reg 26:175–181

    Article  CAS  Google Scholar 

  • Gouvêa CMCP, Souza JF, Magalhães ACN, Martins IS (1997) NO releasing substances that induce growth elongation in maize root segments. Plant Growth Reg 21:183–187

    Article  Google Scholar 

  • Han X, Yang H, Duan K, Zhang X, Zhao H, You S, Jiang Q (2009) Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets. Plant Cell Tissue Org Cult 96:29–34

    Article  CAS  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  CAS  PubMed  Google Scholar 

  • Hung KT, Kao CH (2004) Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol 161:43–52

    Article  CAS  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique, 2nd edn. Tata McGraw-Hill, Bombay-New Delhi

    Google Scholar 

  • Kaul V, Williams EG (1987) Multiple shoot induction in vitro from the hypocotyl of germinating embryos of flax (Linum usitatissimum L.). J Plant Physiol 131:441–448

    Google Scholar 

  • Kröncke KD, Kolb-Bachofen V (1996) Detection of nitric oxide interaction with zinc finger proteins. Meth Enzymol 269:279–284

    Article  PubMed  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    CAS  Google Scholar 

  • Link GKK, Eggers V (1946) Mode, site and time of initiation of hypocotyledonary bud primordia in Linum usitatissimum L. Bot Gaz 107:441–454

    Article  Google Scholar 

  • Manjunatha G, Raj SN, Shetty NP, Shetty HS (2008) Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pest Biochem Physiol 91:1–11

    Article  CAS  Google Scholar 

  • Murashige TF, Skoog A (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Planta 15:473–497

    Article  CAS  Google Scholar 

  • Murgia I, De Pinto MC, Delledonne M, Soave C, De Gara L (2004) Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J Plant Physiol 161:777–783

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Ötovös K, Pasternak TP, Miskolczi P, Domoki M, Dorjgotov D, Szűcs A, Bottka S, Dudits D, Fever A (2005) Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant J 43:849–860

    Article  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  CAS  PubMed  Google Scholar 

  • París R, Lamattina L, Casalongué CA (2007) Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol Biochem 45:80–86

    Article  PubMed  Google Scholar 

  • Planchet E, Kaiser WM (2006) Nitric oxide production in plants: facts and fictions. Plant Signal Behav 1:46–51

    PubMed  Google Scholar 

  • Salaj J, Petrovská B, Obert B, Preťová A (2005) Histological study of embryo-like structures initiated from hypocotyl segments of flax (Linum usitatissimum L.). Plant Cell Rep 24:590–595

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    Article  PubMed  Google Scholar 

  • Ullrich T, Oberle S, Abate A, Schröder H (1997) Photoactivation of the nitric oxide donor SIN-1. FEBS Lett 406:66–68

    Article  CAS  PubMed  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    Article  CAS  PubMed  Google Scholar 

  • Zhao DY, Tian QY, Li LH, Zhang WH (2007) Nitric oxide is involved in nitrate induced inhibition of root elongation in Zea mays. Ann Bot 100:497–503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

C.K. gratefully acknowledges the awards of Junior and Senior Research Fellowships by the Council of Scientific and Industrial Research (New Delhi). This work was partially financed by R & D miscellaneous grant provided to S.B.B. by the University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi B. Babbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, C., Babbar, S.B. Nitric oxide promotes in vitro organogenesis in Linum usitatissimum L.. Plant Cell Tiss Organ Cult 103, 353–359 (2010). https://doi.org/10.1007/s11240-010-9788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9788-3

Keywords

Navigation