Skip to main content
Log in

Teratomas of Drosera capensis var. alba as a source of naphthoquinone: ramentaceone

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plants belonging to genus Drosera (family Droseraceae) contain pharmacologically active naphthoquinones such as ramentaceone and plumbagin. Hairy root cultures obtained following Agrobacterium rhizogenes-mediated transformation have been reported to produce elevated levels of secondary compounds as well as exhibit desirable rapid biomass accumulation in comparison to untransformed plants. The aim of this study was to establish hairy root or teratoma cultures of Drosera capensis var. alba and to increase the level of ramentaceone in transformed tissue by application of abiotic and biotic elicitors. The appearance of transformed tissues—teratomas but not hairy roots was observed 18 weeks after transformation. The transformation efficiency was 10% and all teratoma cultures displayed about 3 times higher growth rate than non-transformed cultures of D. capesis. The transformation was confirmed by PCR and Southern hybridization using primers based on the A. rhizogenes rolB and rolC gene sequences. HPLC analysis of ramentaceone content indicated 60% higher level of this metabolite in teratoma tissue in comparison to non-transformed cultures. Among the elicitors tested jasmonic acid (2.5 mg l−1) turned out to be the most effective. The productivity of ramentaceone in elicited teratoma cultures was about sevenfold higher than in liquid cultures of D. capensis var. alba and amounted to 2.264 and 0.321 mg respectively during 4 weeks of cultivation. This is the first report on the transformation of Drosera plant with A. rhizogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CTAB:

Hexadecyltrimethylammoniumbromide

DW:

Dry weight

FW:

Fresh weight

JA:

Jasmonic acid

MBC:

Minimal Bactericidal Concentration

MIC:

Minimal Inhibitory Concentration

References

  • Ahn JC, Hwang B, Tada H, Ishimaru K, Sasaki K, Shimomura K (1996) Polyacetylenes in hairy roots of Platycodon grandiflorum. Phytochemistry 42:69–72

    CAS  Google Scholar 

  • Aoyama T, Hirayama T, Tamamoto S, Oka A (1989) Putative start codon TTG for the regulatory protein VirG of the hairy-root-inducing plasmid pRiA4. Gene 78:173–178

    CAS  PubMed  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513–521

    CAS  Google Scholar 

  • Bekesiova I, Nap JP, Mlynarova L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep 17:269–277

    CAS  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux MA, Jacquin-Dubreuil A (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J Biotechnol 81:151–158

    CAS  PubMed  Google Scholar 

  • Caniato R, Filippini R, Cappelletti EM (1989) Naphthoquinone contents of cultivated Drosera species Drosera binata, Drosera binata var. dichotomia and D. capensis. Int J Crude Res 27(3):129–136

    CAS  Google Scholar 

  • De Paolis A, Mauro HL, Pomponi M, Cardarelli M, Spano L, Constantino P (1985) Localization of agropine-synthesizing functions in the TR region of the root inducing plasmid of Agrobacterium rhizogenes 1865. Plasmid 13:1–7

    PubMed  Google Scholar 

  • Finnie JF, van Staden J (1993) XII Drosera spp. (Sundew): micropropagation and the in vitro production of plumbagin. In: Bajaj YPS (ed) Biotechnology and agriculture and forestry 24. Medicinal and aromatic plants V. Springer, Berlin

    Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    CAS  PubMed  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci 89:2389–2393

    CAS  PubMed  Google Scholar 

  • Hirsikorpi M, Kämäräinen T, Teeri T, Hohtola A (2002) Agrobacterium-mediated transformation of round leaved sundew (Drosera rotundifolia L.). Plant Sci 162:537–542

    CAS  Google Scholar 

  • Hook ILI (2001) Naphthoquinone content of in vitro cultured plants and suspension of Dionaea muscipula and Drosera species. Plant Cell Tiss Organ Cult 67:281–285

    CAS  Google Scholar 

  • Jung HY, Kanga SM, Kanga YM, Kanga MJ, Yun DJ, Bahkb JD, Yang JK, Choi MS (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme Microb Technol 33:987–990

    CAS  Google Scholar 

  • Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic Press, inc. Harcourt Brace Jovanovich, Publishers, USA

    Google Scholar 

  • Kawiak A, Wasilewska A, Stasilojc G, Stobiecki M, Bigda J, Lojkowska E (2006) Cytotoxic and apoptosis-inducing activity of ramentaceone - a naphthoquinone from Drosera sp. Planta Med 72:1008

    Google Scholar 

  • Komaraiah P, Amrutha RN, Kavi Kishor PB, Rhamakrishna SV (2002) Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzyme Microb Technol 31:634–639

    CAS  Google Scholar 

  • Krolicka A, Staniszewska I, Bielawski K, Malinski E, Szafranek J, Lojkowska E (2001) Establishment of hairy root cultures of Ammi majus. Plant Sci 160:259–264

    CAS  PubMed  Google Scholar 

  • Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E (2008) Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants by addition of elicitors. Enzyme Microb Technol 42:216–221

    CAS  Google Scholar 

  • Krolicka A, Szpitter A, Maciag M, Biskup E, Gilgenast E, Romanik G, Kaminski M, Wegrzyn G, Lojkowska E (2009) Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of Drosera aliciae. Biotechnol Appl Biochem 53(3):175–184

    CAS  Google Scholar 

  • Mahagamasekera MGP, Doran PM (1998) Intergeneric co-culture of genetically transformed organs for the production of scopolamine. Phytochemistry 47(1):17–25

    CAS  Google Scholar 

  • Mallol A, Cusidó RM, Palazón J, Bonfill M, Morales C, Pinñol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57:365–371

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. In: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Mizukami H, Konoshima M, Tabata M (1977) Effect of nutrition factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry 16:1183–1186

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nahálka J, Blanarik P, Gemeiner P, Matúšova E, Partlová I (1996) Production of plumbagin by cell suspension cultures of Drosophyllum lusitanicum Link. J Biotechnol 49:153–161

    Google Scholar 

  • Pellegrineschi A, Damon JR, Valtorta N, Paillard N, Tepfer D (1994) Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes. Biotechn 12:64–68

    CAS  Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Google Scholar 

  • Saito K, Murakoshi I, Inzé D, van Montagu M (1989) Biotransformation of nicotine alkaloids by tobacco shooty teratomas induced by a Ti plasmid mutant. Plant Cell Rep 7:607–610

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sidwa-Gorycka M, Krolicka A, Orlita A, Malinski E, Gołębiowski M, Kumirska J, Chromik A, Biskup E, Stepnowski P, Lojkowska E (2009) Hairy root cultures of Ruta graveolens L. as a rich source of coumarins and furanocoumarins. Plant Cell Tiss Org Cult 97:59–69

    CAS  Google Scholar 

  • Spollansky TC, Pitta-Alvarez SI, Giulietti AM (2000) Effect of jasmonic acid and aluminium on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electron J Biotechn 3(1):72–75

    Google Scholar 

  • Subroto MA, Hamill JD, Doran PM (1996) Development of shooty teratomas from several solanaceous plants: growth kinetics, stoichiometry and alkaloid production. J Biotechnol 45:45–57

    CAS  Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura T, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42:431–434

    CAS  Google Scholar 

  • Tanaka N, Matsumoto T (1993) Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep 13:87–90

    CAS  Google Scholar 

  • Tanaka N, Takao M, Matsumoto T (1995) Vincamine production in multiple shoot culture derived from hairy roots of Vinca minor. Plant Cell Tiss Organ Cult 41:61–64

    CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    CAS  PubMed  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    CAS  Google Scholar 

  • Thornsberry C (1991) Antimicrobial susceptibility testing: general considerations. In: Balows A, Hausler WJ, Herrmann KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, 5th edn. American Society for Microbiology, Washington DC, pp 1059–1201

    Google Scholar 

  • Wang YM, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Cell Res 11:279–284

    CAS  PubMed  Google Scholar 

  • Yan-Nong S, Shibuya M, Ebizuka Y, Sankawa U (1990) Hydroxyacetosyringone is the major virulence gene activating factor in belladonna hairy root cultures, and inositol enhance its activity. Chem Pharm Bull 38:2063–2065

    Google Scholar 

Download references

Acknowledgments

This work was supported by DS/0051-4-0010-9 and the Foundation for Polish Science grant START for Anna Szpitter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Krolicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krolicka, A., Szpitter, A., Stawujak, K. et al. Teratomas of Drosera capensis var. alba as a source of naphthoquinone: ramentaceone. Plant Cell Tiss Organ Cult 103, 285–292 (2010). https://doi.org/10.1007/s11240-010-9778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9778-5

Keywords

Navigation