Production of anti-HIV-1 calanolides in a callus culture of Calophyllum brasiliense (Cambes)

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Calophyllum brasiliense (Cambes) produces calanolide secondary metabolites that are active against human immunodeficiency virus type 1 reverse transcriptase. In this study, it was demonstrated that plant tissue culture is a useful technique for producing these metabolites. Different concentrations and combinations of plant growth regulators were tested in leaf and seed explants to establish callus cultures capable of producing calanolides. Highest callus induction (100%) was achieved when seed explants were incubated in a medium consisting of 8.88 μM 6-benzyladenine and 20 μM picloram. Highest callus induction (80.67%) was observed when leaf explants were incubated on a medium consisting of 0.46 μM kinetin and 5.37 μM α-naphthaleneacetic acid. High-performance liquid chromatography quantitative analysis revealed higher calanolide B and calanolide C production in calluses from seed explants than those developed from leaves (309.25 vs. 8.70 mg kg−1 for calanolide B; 117.70 vs. 0.0 mg kg−1 for calanolide C).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Abbreviations

ANOVA:

Analysis of variance

BA:

6-Benzyladenine

DWAD:

Dual wavelength absorbance detector

DW:

Dry weight

HIV-1 RT:

Human immunodeficiency virus type 1 reverse transcriptase

HPLC:

High-performance liquid chromatography

IBA:

Indole-3-butyric acid

KIN:

Kinetin

NAA:

α-Naphthaleneacetic acid

PGR(s):

Plant growth regulator(s)

PIC:

Picloram

PVP:

Polyvinylpyrrolidone

RT :

Retention time

TDZ:

Thidiazuron

WPM:

Woody plant medium

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  1. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    CAS  PubMed  Article  Google Scholar 

  2. Bhojwani SS, Razdan MK (1983) Plant tissue culture. Elsevier Science, Amsterdam

    Google Scholar 

  3. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    CAS  Article  Google Scholar 

  4. Dornenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Tech 17:674–684

    Article  Google Scholar 

  5. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Article  Google Scholar 

  6. Harnett SM, Oosthuizen V, Van de Venter M (2005) Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J Ethnopharmacol 96:113–119

    CAS  PubMed  Article  Google Scholar 

  7. Hay AE, Guilet D, Morel C, Larcher G, Macherel D, Le Ray AM, Litaudon M, Richomme P (2003) Antifungal chromans inhibiting the mitochondrial respiratory chain of pea seeds and new xanthones from Calophyllum caledonicum. Planta Med 69:1130–1135

    CAS  PubMed  Article  Google Scholar 

  8. Huerta-Reyes M, Basualdo MC, Abe F, Jiménez-Estrada M, Soler C, Reyes-Chilpa R (2004) HIV-1 Inhibitory compounds from Calophyllum brasiliense leaves. Biol Pharm Bull 27:1471–1475

    CAS  PubMed  Article  Google Scholar 

  9. Kashman Y, Gustafson KR, Fuller RW, Cardellina IIJH, McMahon JB, Currens MJ, Buckheit RW, Hughes SH, Cragg GM, Boyd MR (1992) The calanolides, a novel HIV inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735–2743

    CAS  PubMed  Article  Google Scholar 

  10. Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  11. McKee TC, Fuller RW, Covington CD, Cardellina JH, Gulakowski RJ, Krepps BL, McMahon JB, Boyd MR (1996) New Pyranocoumarins Isolated from Calophyllum lanigerum and Calophyllum teysmanniil. J Nat Prod 59:754–758

    CAS  PubMed  Article  Google Scholar 

  12. Mi-Jeong A, Kee-Dong Y, Chul YK, So-Young M, Yong-ung K, Hyun JK, Jeong HK, Cha-Gyun S, Chong-Kyo L, Tae GK, Seung HK, Hoon H, Jinwoong K (2002) Inhibition of HIV-1 reverse transcriptase and HIV-1 integrase and antiviral activity of Korean seaweed extracts. J Appl Phycol 14:325–329

    Article  Google Scholar 

  13. Mulabagal V, Tsay HS (2004) Plant cell cultures - an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Article  Google Scholar 

  15. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol-Plant 34:267–275

    CAS  Article  Google Scholar 

  16. Nair LG, Seeni S (2003) In vitro multiplication of Calophyllum apetalum (Clusiaceae), an endemic medicinal tree of the western ghats. Plant Cell Tiss Organ Cult 75:169–174

    CAS  Article  Google Scholar 

  17. Ovenden SPB, Yu J, Wan SS, Sberna G, Murray TR, Rhodes D, Cox S, Coates J, Neville GW, Meurer-Grimes BM (2004) Globoidnan A: a lignan from Eucalyptus globoidea inhibits HIV integrase. Phytochemistry 65:3255–3259

    CAS  PubMed  Article  Google Scholar 

  18. Pawar KD, Thengane SR (2009) Influence of hormones and medium components on expression of dipyranocoumarins in cell suspension cultures of Calophyllum inophyllum L. Process Biochem 44:916–922

    CAS  Article  Google Scholar 

  19. Pawar KD, Joshi SP, Bhide SR, Thengane SR (2007) Pattern of anti HIV dypiranocoumarin expression in callus cultures of Calophyllum inophyllum Linn. J Biotechnol 130:346–353

    CAS  PubMed  Article  Google Scholar 

  20. Ramachandra RS, Ravishankar GA (2002) Plant cell culture: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  Google Scholar 

  21. Reyes-Chilpa R, Estrada ME, Ramírez AT, Amekraz B, Aumelas A, Jankowski CK, Vázquez TM (2004) Cytotoxic effects of mammea type coumarins from Calophyllum brasilense. Life Sci 75:1635–1647

    CAS  PubMed  Article  Google Scholar 

  22. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    CAS  PubMed  Google Scholar 

  23. Staba EJ (1982) Plant tissue culture as a source of biochemicals. CRC Press, Florida

    Google Scholar 

  24. Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associated, USA

    Google Scholar 

  25. Thengane SR, Bhosle SV, Deodhar SR, Pawar KD, Kulkarni DK (2006) Micropropagation on Indian laurel (Calophyllum inophyllum), a source of anti-HIV compounds. Curr Sci 90:1393–1397

    CAS  Google Scholar 

  26. UNAIDS (2008) Report on the global AIDS epidemic. Available via http://www.unaids.org/en/KnowledgeCentre/HIVData/GlobalReport/2008/2008_Global_report.asp. Accessed 10 March 2009

  27. Vanneste S, Friml J (2009) Auxin: trigger for change in plant development. Cell 136:1005–1016

    CAS  PubMed  Article  Google Scholar 

  28. Whitehead IM, Threlfall DR (1992) Production of phytoalexins by plant tissue cultures. J Biotechnol 26:63–81

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Marius Mumbai Massip from Universidad of Barcelona, Spain, and Dr. Arturo Navarro Ocaña from UNAM for their assistance with the HPLC analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Cruz-Sosa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernabé-Antonio, A., Estrada-Zúñiga, M.E., Buendía-González, L. et al. Production of anti-HIV-1 calanolides in a callus culture of Calophyllum brasiliense (Cambes). Plant Cell Tiss Organ Cult 103, 33–40 (2010). https://doi.org/10.1007/s11240-010-9750-4

Download citation

Keywords

  • Calophyllum brasiliense
  • Secondary metabolite
  • Tissue culture
  • Calanolide B
  • Calanolide C
  • HIV-1