Skip to main content

Plant regeneration of the mining ecotype Sedum alfredii and cadmium hyperaccumulation in regenerated plants

Abstract

An efficient micropropagation system for mining ecotype Sedum alfredii Hance, a newly identified Zn/Cd hyperaccumulator, was developed. Frequency of callus induction reached up to 70% from leaves incubated on Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg l−1 6-benzyladenine (BA), and 83% from internodal stem segments grown on MS medium with 0.1 mg l−1 2,4-D and 0.1 mg l−1 BA. Callus proliferated rapidly on MS medium containing 0.2 mg l−1 2,4-D and 0.05 mg l−1 thidiazuron. The highest number of adventitious buds per callus (17.3) and frequency of shoot regeneration (93%) were obtained when calli were grown on MS medium supplemented with 2.0 mg l−1 BA and 0.3 mg l−1 α-naphthalene acetic acid (NAA). Elongation of shoots was achieved when these were incubated on MS medium containing 3.0 mg l−1 gibberellic acid. Induction of roots was highest (21.4 roots per shoot) when shoots were transferred to MS medium containing 2.0 mg l−1 indole 3-butyric acid rather than either indole 3-acetic acid or NAA. When these in vitro plants were acclimatized and transferred to the greenhouse, and grown in hydroponic solutions containing 200 μM cadmium (Cd), they exhibited high efficiency of Cd transport, from roots to shoots, and hyperaccumulation of Cd.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

2,4-D:

2,4-Dichlorophenoxy acetic acid

BA:

6-Benzyladenine

NAA:

α-Naphthalene acetic acid

GA3 :

Gibberellic acid

IBA:

Indole 3-butyric acid

TDZ:

Thidiazuron

IAA:

Indole 3-acetic acid

References

  1. Amutha S, Muruganantham M, Ganapathi A (2006) Thidiazuron-induced high-frequency axillary and adventitious shoot regeneration in Vigna radiata (L.) Wilczek. In Vitro Cell Dev Biol Plant 42:26–30

    Article  CAS  Google Scholar 

  2. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  3. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  4. Bañuelos GS (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144:19–23

    PubMed  Article  CAS  Google Scholar 

  5. Brandao J, Salema R (1977) Callus and plantlets development from cultured leaf explants of Sedum telephium L. Z Pflanzenphysiol 85:1–8

    CAS  Google Scholar 

  6. Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    Article  CAS  Google Scholar 

  7. Chen Y, Fan J, Yi F, Luo Z, Fu Y (2003) Rapid clonal progagation of Dioscorea zingiberensis. Plant Cell Tiss Organ Cult 73:75–80

    Article  CAS  Google Scholar 

  8. Corso GD, Borgato L, Furini A (2005) In vitro plant regeneration of the heavy metal tolerant and hyperaccumulator Arabidopsis halleri (Brassicaceae). Plant Cell Tiss Organ Cult 82:267–270

    Article  CAS  Google Scholar 

  9. Cui J, Chen JJ, Henny RJ (2009) Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry. In Vitro Cell Dev Biol Plant 45:34–43

    CAS  Google Scholar 

  10. Deng DM, Shu WS, Zhang J, Zou HL, Lin Z, Ye ZH, Wong MH (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ Pollut 147:381–386

    PubMed  Article  CAS  Google Scholar 

  11. Dobos É, Dános B, László-Bencsik Á (1994) Callus induction and shoot regeneration in Sempervivum tectorum. Plant Cell Tiss Organ Cult 36:141–143

    Article  CAS  Google Scholar 

  12. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implication for phytoremediation. J Environ Qual 26:776–781

    CAS  Article  Google Scholar 

  13. Evans DA, Sharp WR, Flick CE (1981) Growth and behavior of cell cultures. In: Thorpe TA (ed) Plant tissue culture: methods and application in agriculture. Academic Press, New York, pp 45–49

    Google Scholar 

  14. He B, Yang XE, Ni WZ, Wei YZ, Long XX, Ye ZQ (2002) Sedum alfredii: a new lead-accumulating ecotype. Acta Bot Sin 44:1365–1370

    CAS  Google Scholar 

  15. Holme IB, Petersen KK (1996) Callus induction and plant regeneration from different explant types of Miscanthus × ogiformis Honda ‘Giganteus’. Plant Cell Tiss Organ Cult 45:43–52

    Article  Google Scholar 

  16. Klein MA, Sekimoto H, Milner MJ, Kochian LV (2008) Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Plant Physiol 147:2006–2016

    PubMed  Article  CAS  Google Scholar 

  17. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Article  Google Scholar 

  18. Liu CZ, Murch SJ, EL-Demerdash M, Saxena PK (2003) Regeneration of the Egyptian medicinal plant Artemisia judaica L. Plant Cell Rep 21:525–530

    PubMed  CAS  Google Scholar 

  19. Liu HJ, Xu Y, Liu YJ, Liu CZ (2006) Plant regeneration from leaf explants of Rhodiola fastigiata. In Vitro Cell Dev Biol Plant 42:345–347

    Article  CAS  Google Scholar 

  20. Long XX, Yang XE, Ye ZQ, Ni WZ, Shi WY (2002) Differences of uptake and accumulation of zinc in four species of Sedum. Acta Bot Sin 44:152–157

    CAS  Google Scholar 

  21. Luciani GF, Mary AK, Pellegrini C, Curvetto NR (2006) Effects of explants and growth regulators in garlic callus formation and plant regeneration. Plant Cell Tiss Organ Cult 87:139–143

    Article  CAS  Google Scholar 

  22. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    PubMed  Article  CAS  Google Scholar 

  23. Mohamed SV, Sung JM, Jeng TL, Wang CS (2006) Organogenesis of Phaseolus angularis L.: high efficiency of adventitious shoot regeneration from etiolated seedlings in the presence of N6-benzylaminopurine and thidiazuron. Plant Cell Tiss Organ Cult 86:187–199

    Article  CAS  Google Scholar 

  24. Mok MC, Kim SG, Armstrong DJ, Mok DWS (1979) Induction of cytokinin autonomy by N, N′-diphenylurea in tissue cultures of Phaseolus lunatus L. Proc Natl Acad Sci USA 76:3880–3884

    PubMed  Article  CAS  Google Scholar 

  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  26. Nakano M, Nagai M, Tanaka S, Nakata M, Godo T (2005) Adventitious shoot regeneration and micropropagation of the Japanese endangered Hylotelephium sieboldii (Sweet ex Hook.) H. Ohba and H. sieboldii var. ettyuense (Tomida) H. Ohba. Plant Biotechnol 22:221–224

    CAS  Google Scholar 

  27. Ni TH, Wei YZ (2003) Subcellular distribution of cadmium in mining ecotype Sedum alfredii. Acta Bot Sin 45:925–928

    Google Scholar 

  28. Paiva Neto VB, Mota TR, Otoni WC (2003) Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell Tiss Organ Cult 75:159–167

    Article  Google Scholar 

  29. Pence VC (2005) In vitro collecting (IVC). I. The effect of collecting method and antimicrobial agents on contamination in temperate and tropical collections. In Vitro Cell Dev Biol Plant 41:324–332

    Article  Google Scholar 

  30. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    PubMed  Article  CAS  Google Scholar 

  31. Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  32. Santos FS, Hernández-Allica J, Becerril JM, Amaral-Sobrinho N, Mazur N, Garbisu C (2006) Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65:43–50

    PubMed  Article  CAS  Google Scholar 

  33. Selvaraj N, Vasudevan A, Manickavasagam M, Ganapathi A (2006) In vitro organogenesis and plant formation in cucumber. Biol Plant 50:123–126

    Article  CAS  Google Scholar 

  34. Singh S, Ray BK, Bhattacharyya S, Deka PC (1994) In vitro propagation of Citrus reticulata Blanco and Citrus limon Burm. f. HortScience 29:214–216

    Google Scholar 

  35. Sun Q, Ye ZH, Wang XP, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556

    PubMed  Article  CAS  Google Scholar 

  36. Thomas JC, Katterman FR (1986) Cytokinin activity induced by thidiazuron. Plant Physiol 81:681–683

    PubMed  Article  CAS  Google Scholar 

  37. Vázquez MD, Barceló J, Poschenrieder C, Mádico J, Hatton P, Baker AJM, Coupe GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350–355

    Google Scholar 

  38. Wu QT, Wei ZB, Ouyang Y (2007) Phytoextraction of metal-contaminated soil by Sedum alfredii H: effects of chelator and co-planting. Water Air Soil Pollut 180:131–139

    Article  CAS  Google Scholar 

  39. Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  CAS  Google Scholar 

  40. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  41. Ye HB, Yang XE, He B, Long XX, Shi WY (2003) Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels. Acta Bot Sin 45:1030–1036

    CAS  Google Scholar 

  42. Yookongkaew N, Srivatanakul M, Narangajavana J (2007) Development of genotype-independent regeneration system for transformation of rice (Oryza sativa ssp. indica). J Plant Res 120:237–245

    PubMed  Article  CAS  Google Scholar 

  43. Zhang ZC, Qiu BS (2007) Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae). J Environ Sci 19:1311–1317

    Article  CAS  Google Scholar 

  44. Zhang ZC, Gao X, Qiu BS (2008) Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69:911–918

    PubMed  Article  CAS  Google Scholar 

  45. Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169:737–745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Program for New Century Excellent Talents in University (No. NCET-08-0786) and Natural Science Foundation of Hubei Province (No. 2008CDB073).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bao-Sheng Qiu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, SJ., Zhang, ZC., Gao, X. et al. Plant regeneration of the mining ecotype Sedum alfredii and cadmium hyperaccumulation in regenerated plants. Plant Cell Tiss Organ Cult 99, 9–16 (2009). https://doi.org/10.1007/s11240-009-9570-6

Download citation

Keywords

  • Callus induction
  • Hyperaccumulator
  • Plant regeneration
  • Rooting
  • Sedum alfredii