Skip to main content
Log in

Chromosomal intervals responsible for tissue culture response of wheat immature embryos

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To study the genetic mechanism underlying the tissue culture response (TCR) of immature embryos, callus induction and regeneration were performed in two separate trials using the recombinant inbred line (RIL) derived from a cross of Nanda2419 with Wangshuibai. In the first trial, immature embryos were collected from plants grown in the greenhouse in the winter of 2005; while in the second trial, immature embryos were collected from donor plants grown in the field during the growing season. Through whole genome screening, seven chromosome regions conditioning percent embryos forming embryogenic callus (PEFEC) and one conditioning percent callus pieces regenerating plantlets (PCRP) were detected. These QTLs were distributed on chromosomes of homoeologous groups 2, 3, 5 and 7. Among all, QPefec.nau-3B.2, QPefec.nau-7D, and QPcrp.nau-3A were consistently identified. The relationship of these identified wheat TCR QTLs with those of other cereal crops has been evaluated. PCR markers linked to TCR QTLs would facilitate germplasm identification, marker-assisted evaluation and utilization of these QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdel-Hady MS, Ali ZA (2006) Effect of gamma irradiation on wheat immature culture regenerated plants. J Appl Sci Res 2:310–316

    Google Scholar 

  • Armstrong CL, Romero-Severson J, Hodges TK (1992) Improved tissue culture response of an elite maize inbred through backcross breeding and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet 84:755–762. doi:10.1007/BF00224181

    Article  Google Scholar 

  • Ben Amer IM, Börner A, Schlegel R (1992) The effect of the hybrid dwarfing gene D2 on tissue culture response of wheat (Triticum aestivum L.). Cereal Res Commun 20:87–93

    Google Scholar 

  • Ben Amer IM, Worland AJ, Börner A (1996) The effects of whole chromosome substitutions differing in alleles for hybrid dwarfing and photoperiodic sensitivity on tissue culture response (TCR) in wheat. Euphytica 89:81–86. doi:10.1007/BF00015723

    Article  Google Scholar 

  • Ben Amer IM, Korzun V, Worland AJ, Börner A (1997) Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor Appl Genet 94:1047–1052. doi:10.1007/s001220050513

    Article  CAS  Google Scholar 

  • Bregitzer P, Campbell RD (2001) Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci 41:173–179

    CAS  Google Scholar 

  • Carman JG, Jefferson NE, Campbell WF (1988) Induction of embryogenic Triticum aestivum L. calli. II. Quantification of organic addenda and other culture variable effects. Plant Cell Tissue Organ Cult 12:97–110. doi:10.1007/BF00043113

    Article  Google Scholar 

  • Cowen NM, Johnson CD, Armstrong K, Miller M, Woosley A, Pescitelli S, Skokut M, Belmar S, Petolino JF (1992) Mapping genes conditioning in vitro androgenesis in maize using RFLP analysis. Theor Appl Genet 84:720–724. doi:10.1007/BF00224175

    Article  Google Scholar 

  • Felsenburg T, Feldman M, Galun E (1987) Aneuploid and alloplasmic lines as tools for the study of nuclear and cytoplasmic control of culture ability and regeneration of scutellar calli from common wheat. Theor Appl Genet 74:802–810. doi:10.1007/BF00247560

    Article  Google Scholar 

  • Fernandez S, Michaux-Ferriere N, Coumans M (1999) The embryogenic response of immature embryo cultures of durum wheat (Triticum Desf): history and improvement by AgNO3. Plant Growth Regul 28:147–155. doi:10.1023/A:1006142504577

    Article  CAS  Google Scholar 

  • Galiba G, Kovacs G, Sutka J (1986) Substitution analysis of plant regeneration from callus culture in wheat. Plant Breed 97:261–263. doi:10.1111/j.1439-0523.1986.tb01062.x

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:152–158

    Article  Google Scholar 

  • He P, Shen LS, Lu CF, Chen Y, Zhu LH (1998) Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol Breed 4:165–172. doi:10.1023/A:1009692221152

    Article  CAS  Google Scholar 

  • Henry Y, Marcotte JL, De Byser J (1994a) Chromosomal location of genes controlling short-term and long-term somatic embryogenesis in wheat revealed by immature embryo culture of aneuploid lines. Theor Appl Genet 89:344–350. doi:10.1007/BF00225165

    Article  Google Scholar 

  • Henry Y, Vain P, Buyser JD (1994b) Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79:45–58. doi:10.1007/BF00023575

    Article  Google Scholar 

  • Hess JR, Carman JG (1998) Embryogenic competence of immature wheat embryos: genotype, donor plant environment, and endogenous hormone levels. Crop Sci 38:249–253

    Article  CAS  Google Scholar 

  • Jia HY, Yi DL, Yu J, Xue SL, Xiang Y, Zhang CQ, Zhang ZZ, Zhang LX, Ma ZQ (2007) Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells 23:323–330

    PubMed  Google Scholar 

  • Jones HD (2004) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147. doi:10.1016/j.jcs.2004.08.009

    Article  CAS  Google Scholar 

  • Kaleikau EK, Sears RG, Gill BS (1989a) Monosomic analysis of tissue culture response in wheat (Triticum aestivum L.). Theor Appl Genet 78:625–632

    Google Scholar 

  • Kaleikau EK, Sears RG, Gill BS (1989b) Control of tissue culture response in wheat (Triticum aestivum L.). Theor Appl Genet 78:783–787

    Google Scholar 

  • Kwon YS, Kim KM, Eun MY, Sohn JK (2001) Quantitative trait loci mapping associated with plant regeneration ability from seed derived Callus in Rice (Oryza sativa L.). Mol Cells 11:64–67

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511. doi:10.1007/s00122-004-1772-z

    Article  PubMed  CAS  Google Scholar 

  • Mano Y, Komatsuda T (2002) Identification of QTL controlling tissue culture traits in barley (Hordeum vulgare L.). Theor Appl Genet 105:708–715. doi:10.1007/s00122-002-0992-3

    Article  PubMed  CAS  Google Scholar 

  • Mano Y, Takahashi H, Sato K, Takeda K (1996) Mapping genes for callus growth and shoot regeneration in barley (Hordeum vulgare L.). Breed Sci 46:137–142

    CAS  Google Scholar 

  • Mathias RJ, Fukui K (1986) The effect of specific chromosome and cytoplasm substitutions on the tissue culture response of wheat (Triticum aestivum) callus. Theor Appl Genet 71:797–800. doi:10.1007/BF00276420

    Article  Google Scholar 

  • Nabors MW, Heyser JM, Dykes TA, Demott KJ (1983) Long-duration high-frequency plant regeneration from cereal tissue cultures. Planta 157:385–391. doi:10.1007/BF00397195

    Article  Google Scholar 

  • Nishimura A, Ashikari M, Lin SY, Takashi T, Angeles E, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102:11940–11942. doi:10.1073/pnas.0504220102

    Article  PubMed  CAS  Google Scholar 

  • Taguchi Shiobara F, Lin SY, Tanno K, Komatsuda T, Yano M, Sasaki T, Oka S (1997) Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor Appl Genet 95:828–833. doi:10.1007/s001220050632

    Article  CAS  Google Scholar 

  • Taguchi Shiobara F, Komatsuda T, Oka S (2001) Comparative analysis of QTL for regeneration ability on barley 2H chromosome and rice chromosome 4. Rice Genetics Newsl 18:14–15

    Google Scholar 

  • Taguchi Shiobara F, Yamamoto T, Yano M, Oka S (2006) Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor Appl Genet 112:968–972. doi:10.1007/s00122-005-0200-3

    Article  PubMed  CAS  Google Scholar 

  • Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:377–387. doi:10.1023/A:1017554129904

    Article  CAS  Google Scholar 

  • Vikrant RA (2001) Comparative study of somatic embryogenesis from immature and mature embryos and organogenesis from leaf-base of Triticale. Plant Cell Tissue Organ Cult 64:33–38. doi:10.1023/A:1010627630651

    Article  Google Scholar 

  • Wan Y, Rocheford TR, Widholm JM (1992) RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize. Theor Appl Genet 85:360–365. doi:10.1007/BF00222882

    Article  CAS  Google Scholar 

  • Wu BH, Zheng YL, Liu DC, Zhou YH (2003) Trait correlation of immature embryo culture in breed wheat. Plant Breed 122:47–51. doi:10.1046/j.1439-0523.2003.00778.x

    Article  Google Scholar 

  • Wu LM, Wei YM, Zheng YL (2006) Effects of silver nitrate on the tissue culture of immature wheat embryos. Russ J Plant Physiol 53:530–534. doi:10.1134/S1021443706040157

    Article  CAS  Google Scholar 

  • Xue SL, Zhang ZZ, Lin F, Kong ZX, Cao Y, Li CJ, Yi HY, Mei MF, Zhao DM, Zhu HL, Xu HB, Wu JZ, Tian DG, Zhang CQ, Ma ZQ (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189. doi:10.1007/s00122-008-0764-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was partially supported by ‘863’ program (2006AA10A104), ‘973’ program (2006CB101700), and NSFC program (30430440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, H., Yu, J., Yi, D. et al. Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell Tiss Organ Cult 97, 159–165 (2009). https://doi.org/10.1007/s11240-009-9510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9510-5

Keywords

Profiles

  1. Zhengqiang Ma