Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 95, Issue 3, pp 305–311 | Cite as

Genetic transformation of golden pothos (Epipremnum aureum) mediated by Agrobacterium tumefaciens

  • Katsutoshi Kotsuka
  • Yuichi TadaEmail author
Original Paper

Abstract

To establish a procedure for Agrobacterium tumefaciens-mediated transformation of golden pothos (Epipremnum aureum) plants, the effects of selection antibiotics and the preculture period of stem explants before A. tumefaciens infection were examined. Explants were co-cultivated with A. tumefaciens EHA105, harboring the plasmid pGWB2/cGUS, on a somatic embryo-inducing medium supplemented with acetosyringone. Resulting transgenic somatic embryos were screened on an antibiotic selection medium, and the transgenic pothos plants were regenerated on a germination medium. Hygromycin was the optimum selection antibiotic tested. The preculture period significantly affected the transformation efficiency, with explants precultured for one-day showing the best efficiency (5–30%). Both transformed hygromycin-resistant embryos and regenerated plants showed β-glucuronidase activity. Southern blot analysis confirmed transgene integration into the pothos genome. This reproducible transformation system for golden pothos may enable the molecular breeding of this very common indoor plant.

Keywords

Golden pothos Transgenic plants Somatic embryo Agrobacterium tumefaciens 

Abbreviations

GUS

β-Glucuronidase

X-gluc

5-Bromo-4-chloro-3-indolyl-b-d-glucuronide

35S-pro

Cauliflower mosaic virus 35S promoter

LB

Luria–Bertani

MS

Murashige and Skoog

TDZ

N-phenyl-N′-1,2,3-thiadiazol-5-ylurea

NAA

α-Naphthalene acetic acid

PCR

Polymerase chain reaction

NPTII

Neomycin phosphotransferase

HPT

Hygromycin phosphotransferase

NOS

Nopaline synthase

Notes

Acknowledgment

We thank Dr. Shibata for providing the plasmid pGWB2/cGUS.

References

  1. Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11. doi: 10.1007/BF00232413 CrossRefGoogle Scholar
  2. Akashi K, Morikawa K, Yokota A (2005) Agrobacterium-mediated transformation system for the drought and excess light stress-tolerant wild watermelon (Citrullus lanatus). Plant Biotechnol 22:13–18Google Scholar
  3. Chase AR (1997) Foliage plant diseases—diagnosis and control. American Phytopathological Society Press, St PaulGoogle Scholar
  4. Chauvin J-E, Marhadour S, Cohat J, Le Nard M (1999) Effects of gelling agents on in vitro regeneration and kanamycin efficiency as a selective agent in plant transformation procedures. Plant Cell Tissue Organ Cult 58:213–217. doi: 10.1023/A:1006390929364 CrossRefGoogle Scholar
  5. Chen J, McConnell DB, Henny RJ, Norman DJ (2005) The foliage plant industry. Hortic Rev (Am Soc Hortic Sci) 31:47–112Google Scholar
  6. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980PubMedGoogle Scholar
  7. Hamza S, Chupeau Y (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J Exp Bot 44:1837–1845. doi: 10.1093/jxb/44.12.1837 CrossRefGoogle Scholar
  8. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi: 10.1046/j.1365-313X.1994.6020271.x PubMedCrossRefGoogle Scholar
  9. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750. doi: 10.1038/nbt0696-745 PubMedCrossRefGoogle Scholar
  10. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  11. Knauss JF (1972) Description and control of Pythium root rot on two foliage plant species. Plant Dis Report 56:211–215Google Scholar
  12. Laine E, Lamblinl F, Lacoux J, Dupre P, Roger D, Sihachakr D, David A (2000) Gelling agent influences the detrimental effect of kanamycin on adventitious budding in flax. Plant Cell Tissue Organ Cult 63:77–80. doi: 10.1023/A:1006455918041 CrossRefGoogle Scholar
  13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  14. Oyabu T, Takenaka K, Wolverton B, Onodera T, Nanto H (2003) Purification characteristics of golden pothos for atmospheric gasoline. Int J Phytoremediat 5:267–276. doi: 10.1080/713779225 CrossRefGoogle Scholar
  15. Rubino L, Russo M (1997) Molecular analysis of the pothos latent virus genome. J Gen Virol 78:1219–1226PubMedGoogle Scholar
  16. Sun H-J, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431. doi: 10.1093/pcp/pci251 PubMedCrossRefGoogle Scholar
  17. Tanaka A, Mita S, Ohta S, Kyozuka J, Shimamoto K, Nakamura K (1991) Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of intron. Nucleic Acids Res 18:6767–6770. doi: 10.1093/nar/18.23.6767 CrossRefGoogle Scholar
  18. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thoronton S et al (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376. doi: 10.1046/j.1365-313X.1997.11061369.x CrossRefGoogle Scholar
  19. Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540. doi: 10.1073/pnas.85.15.5536 PubMedCrossRefGoogle Scholar
  20. Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11:165–185. doi: 10.1007/BF02670474 CrossRefGoogle Scholar
  21. Wolverton BC, McDonald RC, Watkins EA (1984) Foliage plants for removing indoor air pollutants from energy-efficient homes. Econ Bot 32:224–228Google Scholar
  22. Zhang Q, Chen J, Henny RJ (2005) Direct somatic embryogenesis and plant regeneration from leaf, petiole, and stem explants of Golden Pothos. Plant Cell Rep 23:587–595. doi: 10.1007/s00299-004-0882-z PubMedCrossRefGoogle Scholar
  23. Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D et al (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333. doi: 10.1023/A:1015243600325 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Bioscience and BiotechnologyTokyo University of TechnologyHachiojiJapan

Personalised recommendations