Skip to main content
Log in

Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

A simple anther culture protocol for Australian spring wheat cultivars was developed using ovary co-culture. The inclusion of ovaries in the induction medium significantly increased the production of embryo-like structures (ELS), green and albino plants in two spring wheat cultivars tested. When five ovaries were added to the induction medium, the mean number of ELS per spike increased from 7.6 to 50.1 and green plants per spike increased from 0.6 to 8.9. The addition of 10 ovaries, however, did not further increase the production of ELS or green plants. The growth regulator combination of 2,4-D and KIN was compared with IAA and BA. There were no significant differences in the numbers of ELS or green plants although significantly fewer albino plants were produced with IAA and BA. Eight additional cultivars were screened using the protocol with either 5 or 10 ovaries in the induction medium. Green plants were obtained from nine varieties at frequencies ranging from 0.3 to 33.0 green plants per spike. Regenerant plants at maturity exhibited chromosome fertility rates in different cultivars ranging from 15% to 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGP:

Arabinogalactan proteins

BA:

6-Benzyladenine

ELS:

Embryo-like structures

IAA:

Indole-3-acetic acid

KIN:

Kinetin

LIM:

Liquid induction medium

PAA:

Phenylacetic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  • Aiti FJ, Benlhabib O, Sharma HC, El Jaafari S, El Hadrami I (1999) Genotypic variation in anther culture and effect of ovary co-culture in durum wheat. Plant Cell Tissue Organ Cult 59:71–76. doi:10.1023/A:1006399512217

    Article  Google Scholar 

  • Barnabás B (2003) Protocol for producing doubled haploids from anther culture of wheat (Triticum aestivum L.). In: Malszynnski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Barnabás B, Pfahler PL, Kovacs G (1991) Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.). Theor Appl Genet 81:675–678. doi:10.1007/BF00226736

    Article  Google Scholar 

  • Barnabás B, Szakacs E, Karsai I, Bedo Z (2001) In vitro androgenesis of wheat: from fundamentals to practical application. Euphytica 119:211–216. doi:10.1023/A:1017558825810

    Article  Google Scholar 

  • Broughton S, Priest P (1997) Barley doubled haploids in Western Australia—improved green plant regeneration from anthers pretreated with high concentrations of mannitol. Eighth Australian barley technical symposium, Gold Coast, Queensland, 7–12 Sep 1997

  • Cistué L, Kasha KJ (2006) Gametic embryogenesis in Triticum: a study of some critical factors in haploid (microspore) embryogenesis. In: Robinson DG (ed) Plant cell monographs: somatic embryogenesis, 2nd edn. Springer, Heidelberg, pp 321–342

    Google Scholar 

  • Cistué L, Ramos A, Castillo AM, Romagosa I (1994) Production of large numbers of doubled haploid plants from barley anthers pre-treated with high concentrations of mannitol. Plant Cell Rep 13:709–712. doi:10.1007/BF00231629

    Article  Google Scholar 

  • Cistué L, Ziauddin A, Simion E, Kasha KJ (1995) Effects of culture conditions on isolated microspore response of barley cultivar Igri. Plant Cell Tissue Organ Cult 42:163–169. doi:10.1007/BF00034234

    Article  Google Scholar 

  • Cistué L, Soriano M, Castillo AM, Valles MP, Sanz JM, Echavarri B (2006) Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 25:257–264. doi:10.1007/s00299-005-0047-8

    Article  PubMed  CAS  Google Scholar 

  • Datta SK, Wenzel G (1987) Isolated microspore derived plant formation via embryogenesis in Triticum aestivum L. Plant Sci 48:49–54. doi:10.1016/0168-9452(87)90069-0

    Article  Google Scholar 

  • Davies PA, Morton S (1998) A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Rep 17:206–210. doi:10.1007/s002990050379

    Article  CAS  Google Scholar 

  • Ding XL, Luckett DJ, Darvey NL (1995) A cost based index of anther culture response in diverse wheat-breeding germplasm. Aust J Exp Agric 35:395–401. doi:10.1071/EA9950395

    Article  Google Scholar 

  • Guzy-Wrobelska J, Labocha-Pawlowska A, Kwasniewski M, Szarejko I (2007) Different recombination frequencies in wheat doubled haploid populations obtained through maize pollination and anther culture. Euphytica 156:173–183. doi:10.1007/s10681-007-9364-z

    Article  Google Scholar 

  • Hansen NJP, Anderson SB (1998) In vitro chromosome doubling with colchicine during microspore culture in wheat (Triticum aestivum L.). Euphytica 102:101–108. doi:10.1023/A:1018348816205

    Article  CAS  Google Scholar 

  • Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep 16:520–525. doi:10.1007/s002990050271

    Article  CAS  Google Scholar 

  • Hu T, Kasha KJ (1999) A cytological study of pretreatments used to improve isolated microspore cultures of wheat (Triticum aestivum L.) cv. Chris. Genome 42:432–441. doi:10.1139/gen-42-3-432

    Article  Google Scholar 

  • Hu TC, Ziauddin A, Simion E, Kasha KJ (1995) Isolated microspore culture of wheat (Triticum aestivum L.) in a defined media I. Effects of pretreatment, isolation methods, and hormones. In Vitro Cell Dev Biol 31:79–83. doi:10.1007/BF02634093

    Article  CAS  Google Scholar 

  • Hunter CP (1988) Plant regeneration from microspores of barley, Hordeum vulgare L. PhD Thesis, Wye College, University of London, London

  • Kasha KJ, Hu TC, Oro R, Simion E, Shim YS (2001) Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. J Exp Bot 52:1227–1238. doi:10.1093/jexbot/52.359.1227

    Article  PubMed  CAS  Google Scholar 

  • Kasha KJ, Simion E, Miner M, Letarte J, Hu TCBB (2003) Haploid wheat isolated microspore culture protocol. In: Malszynnski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Khush GS, Virmani SS (1996) Haploids in plant breeding. In: Jain SR, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Vol. 1 Fundamental aspects and methods. Kluwer Academic Publishers, Dordrecht, pp 11–33

    Google Scholar 

  • Kim K-M, Baenziger PS, Rybczynski JJ, Arumuganathan K (2003) Characterization of ploidy levels of wheat microspore-derived plants using laser flow cytometry. In Vitro Cell Dev Biol 39:663–668

    Google Scholar 

  • Kuhlmann U, Foroughi-Wehr B (1989) Production of doubled haploid lines in frequencies sufficient for barley breeding programs. Plant Cell Rep 8:78–81. doi:10.1007/BF00716843

    Article  Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698. doi:10.1007/s00299-005-0013-5

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zheng MY, Polle EA, Konzack CF (2002) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692

    Google Scholar 

  • Logue SJ, Giles LC, Sparrow DHB (1993) Genotype and environment strongly influence barley anther culture using Australian genotypes. Aust J Bot 41(2):227–236. doi:10.1071/BT9930227

    Article  Google Scholar 

  • Luckett DJ, Venkatanagappa S, Darvey NL, Smithard R (1991) Anther culture of Australian wheat germplasm using modified C17 medium and membrane rafts. Aust J Plant Physiol 18:357–367

    Article  Google Scholar 

  • Navarro-Alvarez W, Baenziger PS, Eskridge KM, Hugo M, Gustafson VD (1994) Addition of colchicine to wheat anther culture media to increase doubled haploid production. Plant Breed 112:192–198. doi:10.1111/j.1439-0523.1994.tb00670.x

    Article  CAS  Google Scholar 

  • Ouyang J, Liang H, Jia S, Zhang C, Zhao T, He L et al (1994) Studies on the chromosome doubling of wheat pollen plants. Plant Sci 98:209–214. doi:10.1016/0168-9452(94)90011-6

    Article  CAS  Google Scholar 

  • Pauk J, Mihaly R, Puolimatka M (2003) Protocol for wheat (Triticum aestivum L.) anther culture. In: Malszynnski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Soriano M, Cistué L, Valles MP, Castillo AM (2007) Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 91:225–234. doi:10.1007/s11240-007-9288-2

    Article  CAS  Google Scholar 

  • Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:377–387. doi:10.1023/A:1017554129904

    Article  CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215. doi:10.1007/BF02173100

    Article  Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109. doi:10.1016/S0065-2296(01)35004-8

    Article  Google Scholar 

  • Tuvesson S, Ljungberg A, Johansson N, Karlsson K-E, Suijs LW, Josset J-P (2000) Large-scale production of wheat and triticale doubled haploids through the use of a single-anther culture method. Plant Breed 119:455–459. doi:10.1046/j.1439-0523.2000.00536.x

    Article  Google Scholar 

  • Tuvesson S, von Post R, Ljungberg A (2003) Wheat anther culture. In: Malszynnski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zheng MY, Liu W, Weng Y, Polle E, Konzak CF (2001) Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep 20:685–690. doi:10.1007/s00299-001-0393-0

    Article  CAS  Google Scholar 

  • Zheng MY, Weng Y, Liu W, Konzack CF (2002) The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.). Plant Cell Rep 20:802–807. doi:10.1007/s00299-001-0411-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the Australian Grains Research and Development Corporation for funding support; Jane Speijers for assistance with statistical analysis and Ian Watson for care and maintenance of the donor plants. I would also like to thank Dr. Ken Kasha and Ecaterina Simion for their helpful discussions and advice about cereal microspore culture techniques and Dr. Heather Clarke for valued suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Broughton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broughton, S. Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell Tiss Organ Cult 95, 185–195 (2008). https://doi.org/10.1007/s11240-008-9432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9432-7

Keywords

Navigation