Identification and control of bacterial contaminants from Ilex dumosa nodal segments culture in a temporal immersion bioreactor system using 16S rDNA analysis

  • Claudia Luna
  • Mónica Collavino
  • Luis Mroginski
  • Pedro Sansberro
Original Paper


Endogenous bacterial contaminants isolated from infected cultures of Ilex dumosa nodal segments were identified as Stenotrophomonas maltophilia and Achromobacter sp. using 16S rDNA analysis. A range of antibiotics with different mechanism of actions and the commercial biocide PPM™ were tested for their capacity to repress the growth of Gram negative bacteria grown in liquid medium during the establishment phase of temporal immersion systems. The best results were obtained with the addition of 0.5 mg ml−1 cefotaxime to the culture media obtaining 100% of uncontaminated cultures without suppress of shoot growth.


Micropropagation of woody plants Contamination RITA® 16S rDNA analysis Cefotaxime 















Plant preservative mixture™


  1. Adesina MF, Lemke A, Costa R, Speksnijder A, Smalla K (2007) Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site-dependent composition and diversity revealed. Soil Biol Biochem 39:2818–2828. doi:10.1016/j.soilbio.2007.06.004 CrossRefGoogle Scholar
  2. Agrawal DC, Banerje AK, Kedari PH, Jacob S, Hazra S, Krishnamurthy KV (1998) Effect of cefotaxime on the growth of excised embryo-axes of six cultivars of cotton (Gossypium hirsutum L.). J Plant Physiol 152:580–582Google Scholar
  3. Aitken-Christie J, Kozai T, Takayama S (1995) Automation in plant tissue culture. General introduction and overview. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Acad Publ, Dordrecht, pp 1–18Google Scholar
  4. Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236. doi:10.1139/cjm-46-3-229 PubMedCrossRefGoogle Scholar
  5. Choi YH, Sertic S, Kim HK, Wilson EG, Michopoulus F, Lefeber AWM et al (2005) Classification of Ilex species based on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis. J Agric Food Chem 53:1237–1245. doi:10.1021/jf0486141 PubMedCrossRefGoogle Scholar
  6. Crossman L, Gould V, Dow J, Vernikos G, Okazaki A, Sebahia M et al (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74. doi:10.1186/gb-2008-9-4-r74
  7. Etienne H, Lartaud M, Michaux-Feriere N, Carron MP, Berthouly M, Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg) using the temporary immersion techniques. In vitro Cell Biol 33:81–87CrossRefGoogle Scholar
  8. Etienne-Barry D, Bertrand B, Vazquez N, Etienne H (1999) Direct sowing of Coffea Arabica somatic embryos mass-produced in a bioreactor and regeneration of plant. Plant Cell Rep 19:111–117. doi:10.1007/s002990050720 CrossRefGoogle Scholar
  9. Filip R, Ferraro GE (2003) Researching on new species of “Mate”: Ilex brevicuspis: phytochemical and pharmacological study. Eur J Nutr 42:50–54. doi:10.1007/s00394-003-0399-1 PubMedCrossRefGoogle Scholar
  10. Filip R, Lopez PG, Ferraro GE (1999) Phytochemical study of Ilex dumosa. Acta Hortic 501:333–336Google Scholar
  11. Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256. doi:10.1146/annurev.arplant.51.1.223 PubMedCrossRefGoogle Scholar
  12. George MW, Tripepi RR (2001) Plant preservative mixtures™ can affect shoot regeneration from leaf explants of Crysanthemum, European birch, and rhododendron. Hortsci 36:768–769Google Scholar
  13. Heck CI, Mejia EG (2007) Yerba mate tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:138–151. doi:10.1111/j.1750-3841.2007.00535.x CrossRefGoogle Scholar
  14. Isenegger DA, Taylor PW, Mullins K, McGregor GR, Barlass M, Hutchinson J (2003) Molecular detection of a bacterial contaminant Bacillus pumilus in symtomless potato plant tissue cultures. Plant Cell Rep 21:814–820PubMedGoogle Scholar
  15. Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359. doi:10.1007/s11240-006-9087-1 CrossRefGoogle Scholar
  16. Luna C, Sansberro P, Mroginski L, Tarragó J (2003) Micropropagation of Ilex dumosa (Aquifoliaceae) from nodal segments in a tissue culture system. Biocell 27:205–212PubMedGoogle Scholar
  17. McAlister B, Finnie J, Watt MP, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial clones in Mondi forest (SA). In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Spriger, Netherlands, pp 425–442CrossRefGoogle Scholar
  18. Paul AL, Semer C, Kucharek T, Ferl R (2001) The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting g transgenic arabidopsis plants for a space shuttle flight experiment. Appl Microbiol Biotechnol 55:480–485. doi:10.1007/s002530000521 PubMedCrossRefGoogle Scholar
  19. Reed BM, Mentzer J, Tanprasert P, Yu X (1998) Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tissue Organ Cult 52:67–70. doi:10.1023/A:1005989000408 CrossRefGoogle Scholar
  20. Rowntree JK (2006) Development of novel methods for the initiation of in vitro bryophyte cultures for conservation. Plant Cell Tissue Organ Cult 87:191–201. doi:10.1007/s11240-006-9154-7 CrossRefGoogle Scholar
  21. Sansberro PA, Rey HY, Mroginski LA (2001a) In vitro culture of zygotic embryos of Ilex species. HortSci 36:351–352Google Scholar
  22. Sansberro PA, Rey HY, Mroginski LA, Krivenki MA (2001b) Plant regeneration from Ilex spp. (Aquifoliaceae) in vitro. Biocell 25:139–146Google Scholar
  23. Schinella G, Fantinelli JC, Mosca SM (2005) Cardioprotective effect of Ilex paraguariensis extract: evidence for a nitric oxide-dependent mechanism. Clin Nutr 24:360–366. doi:10.1016/j.clnu.2004.11.013 PubMedCrossRefGoogle Scholar
  24. Tanprasert P, Reed BM (1998) Detection and identification of bacterial contaminants of strawberry runner explants. Plant Cell Tissue Organ Cult 52:53–55. doi:10.1023/A:1005908210886 CrossRefGoogle Scholar
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  26. Zhu LH, Li XY, Welander M (2005) Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell Tissue Organ Cult 81:313–318. doi:10.1007/s11240-004-6659-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Claudia Luna
    • 1
  • Mónica Collavino
    • 1
  • Luis Mroginski
    • 1
  • Pedro Sansberro
    • 1
  1. 1.Facultad de Ciencias Agrarias (UNNE)Instituto de Botánica del NordesteCorrientesArgentina

Personalised recommendations