Skip to main content

Improving genetic transformation of European chestnut and cryopreservation of transgenic lines

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of the present work was to study the effect of the developmental stage of the somatic embryos and of the genotype on the genetic transformation of embryogenic lines of European chestnut (Castanea sativa Mill.) and the cryopreservation of the embryogenic lines that are generated. As an initial source of explants in the transformation experiments, it was found that the use of somatic embryos isolated in the globular stage or clumps of 2–3 embryos in globular/heart-shaped stages was more effective (30%) than when embryos at the cotyledonary stage were used (6.7%). All of the seven genotypes tested were transformed, and transformation efficiency was clearly genotype dependent. Three transgenic lines were successfully cryopreserved using the vitrification procedure, and the stable integration of the uidA gene into the transgenic chestnut plants that were regenerated subsequent to cryopreservation was demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BA:

6-benzyladenine

DMSO:

dimethylsulfoxide

MS:

Murashige and Skoog medium

NAA:

α-Naphthaleneacetic acid

PVS2:

Plant vitrification solution 2

LN:

Liquid nitrogen

References

  1. Aronen TS, Krajnakova J, Häggman HM, Ryynänen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    Article  CAS  Google Scholar 

  2. Bergmann BA, Stomp A-M (1992) Effect of host plant genotype and growth rate on Agrobacterium tumefaciens-mediated gall formation in Pinus radiata. Phytopathol 82:1457–1462

    Article  Google Scholar 

  3. Collada C, Casado C, Fraile A, Aragoncillo C (1992) Basic endochitinases are major proteins in Castanea sativa cotyledons. Plant Physiol 100:778–783

    PubMed  CAS  Article  Google Scholar 

  4. Conedera M, Manetti MC, Giudici F, Amorini E (2004) Distribution and economic potential of the sweet chestnut (Castanea sativa Mill.) in Europe. Ecol Medit 30:47–61

    Google Scholar 

  5. Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Ann Bot 92:129–136

    PubMed  Article  CAS  Google Scholar 

  6. Corredoira E, Montenegro D, San-José MC, Vieitez AM, Ballester A (2004a) Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23:311–318

    PubMed  Article  CAS  Google Scholar 

  7. Corredoira E, San-José MC, Ballester A, Vieitez AM (2004b) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25:33–42

    PubMed  Google Scholar 

  8. Corredoira E, Ballester A, Vieitez FJ, Vieitez AM (2006) Somatic embryogenesis in chestnut. In: Mujib A, Samaj J (eds) Plant cell monogr (2) Somatic embryogenesis. Springer, Berlin Heidelberg New York, pp 177–199

    Google Scholar 

  9. Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol—Plant 40:427–433

    Article  Google Scholar 

  10. Fladung M, Kumar S, Ahuja R (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Trans Res 6:111–121

    Article  CAS  Google Scholar 

  11. García-Casado G, Collada C, Allona I, Soto A, Casado R, Rodríguez-Cerezo E, Gomez L, Aragoncillo C (2000) Characterization of an apoplastic basic thaumatin-like protein from recalcitrant chestnut seeds. Physiol Plant 110:172–180

    Article  Google Scholar 

  12. Häggman HM, Ryynänen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Organ Cult 54:45–53

    Article  Google Scholar 

  13. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  14. Humara JM, Marín MS, Parra F, Ordás RJ (1999) Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledons using a modified binary vector. Can J For Res 29:1627–1632

    Article  CAS  Google Scholar 

  15. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Article  Google Scholar 

  16. Jokipii S, Ryynänen L, Kallio PT, Aronen T, Häggman H (2004) A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula × Populus tremuloides Michx. Plant Sci 166:799–806

    Article  CAS  Google Scholar 

  17. Lambardi M, Fabbri A, Caccavale A (2000) Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep 19:213–218

    Article  CAS  Google Scholar 

  18. Liang H, Catramis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389

    Article  CAS  Google Scholar 

  19. Lin YJ, Zhang Q (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540–547

    PubMed  Article  CAS  Google Scholar 

  20. Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189

    PubMed  Article  Google Scholar 

  21. Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16:787–791

    Article  CAS  Google Scholar 

  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobbaco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  23. Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tiss Organ Cult 84:69–78

    Article  CAS  Google Scholar 

  24. Powell WA, Catranis CM, Maynard CA (1995) Synthetic antimicrobial peptide design. Mol Plant Microbe Interact 8:792–794

    PubMed  CAS  Google Scholar 

  25. Rothrock RE, Polin-McGuigan LD, Newhouse AE, Powell WA, Maynard CA (2007) Plate flooding as an alternative Agrobacterium-mediated transformation method for American chestnut somatic embryos. Plant Cell Tissue Organ Cult 88:93–99

    Article  Google Scholar 

  26. Ryynänen L, Sillanpää M, Kontunen-Soppela S, Timonen H, Kangasjärvi J, Vapaavuori E, Häggman H (2002) Preservation of transgenic silver birch (Betula pendula Roth) lines by means of cryopreservation. Mol Breeding 10:143–152

    Article  Google Scholar 

  27. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  Google Scholar 

  28. Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. JIRCAS, IPGRI, Tsukuba, Rome, pp 1–7

    Google Scholar 

  29. Sánchez MC, San-José MC, Ferro E, Ballester A, Vieitez AM (1997) Improving micropropagation conditions for adult-phase shoots of chestnut. J Horti Sci 72:433–443

    Google Scholar 

  30. Valladares S, Toribio M, Celestino C, Vieitez AM (2004) Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. CryoLetters 25:177–186

    PubMed  Google Scholar 

  31. Vendrame WA, Holliday CP, Montello PM, Smith DR, Merkle SA (2001) Cryopreservation of yellow-poplar and sweetgum embryogenic cultures. New For 21:283–292

    Google Scholar 

  32. Vidal N, Sánchez C, Jorquera L, Ballester A, Vieitez AM (2005) Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips. In Vitro Cell Dev Biol-Plant 41:63–68

    Article  CAS  Google Scholar 

  33. Vieitez FJ (1995) Somatic embryogenesis in chestnut. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer Academic Publishers, The Netherlands, pp 375–407

    Google Scholar 

  34. Wenck AR, Quinn M, Whetten RW, Pullmann G, Sederoff R (1999) High-effciency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407–416

    PubMed  Article  CAS  Google Scholar 

  35. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, The Netherlands, pp 205–248

    Google Scholar 

Download references

Acknowledgements

The study was funded by the Ministerio de Educación y Ciencia (Spain) through the project AGL2005-00709.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ballester.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corredoira, E., San-José, M.C., Vieitez, A.M. et al. Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell Tiss Organ Cult 91, 281 (2007). https://doi.org/10.1007/s11240-007-9295-3

Download citation

Keywords

  • Agrobacterium
  • Castanea sativa
  • Embryogenic lines