Skip to main content

Advertisement

Log in

Genetic transformation of Agave salmiana by Agrobacterium tumefaciens and particle bombardment

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

BAP:

6-Benzylaminopurine

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog medium

NAA:

Naphthaleneacetic acid

References

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acid Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Cedeno M (1995) Tequila production. Crit Rev Biotechnol 15(1):1–11

    PubMed  CAS  Google Scholar 

  • Christensen A, Quail P (1996) Ubiquitin promoter based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1992) Genetic transformation of crop plants using microprojectile bombardment. Plant J 2:275–281

    Article  CAS  Google Scholar 

  • Das T (1992) Micropropagation of Agave sisalana. Plant Cell Tissue Organ Cult 31:253–255

    CAS  Google Scholar 

  • Dong S, Qu R (2005) High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci 168:1453–1458

    Article  CAS  Google Scholar 

  • Gil K, González M, Martínez O, Simpson J, Vandemark G (2001) Analysis of genetic diversity in Agave tequilana var. Azul using RAPD markers. Euphytica 119:335–341

    Article  Google Scholar 

  • Hazra SK, Das S, Das AK (2002) Sisal plant regeneration via organogenesis. Plant Cell Tissu Organ Cult 70(3):235–240

    Article  CAS  Google Scholar 

  • He YG, Rooke L, Steele S, Békés F, Gras P, Tatham SA, Fido R, Barcelo P, Shewry PR, Lazzeri AP (1999) Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Mol Breeding 5(4):377–386

    Article  CAS  Google Scholar 

  • Herman I, Jacobs A, Van Montagu M, Depicker A (1990) Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet 224:248–256

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol. 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14(6):745–750

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Komari T (1989) Transformation of callus-cultures of nine plant-species mediated by Agrobacterium. Plant Sci 60:223–229

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Sohnius EM, Attig R, Lopez MG (2006) Quantification of selected volatile constituents and anions in Mexican Agave spirits (tequila, mezcal, sotol, bacanora). J Agric Food Chem 54(11):3911–3915

    Article  PubMed  CAS  Google Scholar 

  • Lopez MG, Mancilla-Margalli NA, Mendoza-Diaz G (2003) Molecular structures of fructans from Agave tequilana Weber var. azul. J Agric Food Chem 51(27):7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Palacios A, Ortega-Larrocea MP, Chavez MV, Bye R (2003) Somatic embryogenesis and organogenesis of Agave victoria-reginae: considerations for its conservation. Plant Cell Tissue Organ Cult 74:135–142

    Article  CAS  Google Scholar 

  • Mere VG, Vázquez AV (2003) Bombardeo de callos embriogénicos de zanahoria (Daucus carota L) y su regeneración con la proteína “G” del virus de la rabia. Bachelor’s thesis. UNAM, México

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and biossays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nikam TD, Bansude GM, Kumar KCA (2003) Somatic embryogenesis in sisal (Agave sisalana Perr. Ex. Englem). Plan Cell Rep 22(3):188–194

    Article  CAS  Google Scholar 

  • Powers DE, Backhaus RA (1989) In vitro propagation of Agave arizonica Gentry and Weber. Plant Cell Tissue Organ Cult 16:57–60

    Article  Google Scholar 

  • Rachmawati D, Hosaka T, Inoue E, Anzai H (2004) Agrobacterium-mediated transformation of Javanica rice cv. Rojolele. Biosci Biotechnol Biochem 68(6):1193–1200

    Article  CAS  Google Scholar 

  • Robert ML, Herrera JL, Contreras F, Scorer KN (1987) In vitro propagation of Agave fourcroydes Lem. (Henequen). Plant Cell Tissue Organ Cult 8:37–48

    Article  CAS  Google Scholar 

  • Robert ML, Herrera-Herrera JL, Castillo E, Ojeda G, Herrera-Alamillo MA (2006) An efficient method for the micropropagation of Agave species. Methods Mol Biol 318:165–178

    PubMed  Google Scholar 

  • Russell JA (1993) The biolistic PDS-1000/He device. Plant Cell Tissue Organ Cult 33:221–226

    Article  Google Scholar 

  • Silva GM, De Souza AM, Lara LS, Mendes TP, Da SBP, Lopez AG (2005) A new steroidal saponin from Agave brittoniana and its biphasic effect on the Na+-ATPase activity. Z Naturforsh C 60(1–2):121–127

    CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100(25):14672–14677

    Article  PubMed  CAS  Google Scholar 

  • Smith RH, Hood EE (1995) Review and interpretation: Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Article  Google Scholar 

  • Stachel SE, Messens E, van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Tel-Zur N, Abbo S, Mylaboski D, Mizrahi y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of the Genera Hylocereus and Selenicereus (Cacataceae). Plant Mol Biol Rep 17:249–254

    Article  CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Torisky RS, Kovacs L, Avdiushko S, Newman JD, Hunt AG, Collins GB (1997) Development of a vector binary system for plant transformation based on supervirulent Agrobacterium tumefaciens strain Chry5. Plant Cell Rep 17:102–108

    Article  CAS  Google Scholar 

  • Valenzuela-Sánchez KK, Juárez-Hernández RE, Cruz-Hernández A, Olalde-Portugal V, Valverde ME, Paredes-López O (2006) Plant regeneration of Agave tequilana by indirect organogenesis. In vitro Cell Dev Biol-Plant 42:336–340

    Article  CAS  Google Scholar 

  • Xu XP, Wei JW, Fan YL, Li BJ (1999) Fertile transgenic indica rice from microprojectile bombardment of embryogenic callus. Yi Chuan Xue Bao 26(3):219–227

    PubMed  CAS  Google Scholar 

  • Yin Z, Wang GL (2000) Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet 100:461–470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. William Cress and Dr. June Simpson Williamson for critical reading of the manuscript. Fellowship No.176117 to support the graduate studies of Silvia Flores-Benitez, from CONACYT Mexico and IPICYT divisional support are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Gabriel Alpuche-Solís.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Benítez, S., Jiménez-Bremont, J.F., Rosales-Mendoza, S. et al. Genetic transformation of Agave salmiana by Agrobacterium tumefaciens and particle bombardment. Plant Cell Tiss Organ Cult 91, 215–224 (2007). https://doi.org/10.1007/s11240-007-9287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9287-3

Keywords