Skip to main content
Log in

Node-derived cultures with high-morphogenic competence in barley and wheat

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

A successful regeneration system is presented for elite cultivars in barley and wheat based on nodes. Nodal explants were excised from in vitro and ex vitro grown plants. A combination of 8.28 μM 4-amino-3,5,6-trichloropicolinic acid and 4.54 μM to 22.71 μm thidiazuron (TDZ) used in MS-based medium containing 60 g l−1 maltose favoured induction of clumps of multiple shoots/buds with or without callus formation in the primary cultures. Within 8–10 weeks upon further subcultures, the proliferation into callus with rapid and continuously forming adventitious buds containing clusters of meristemoids, termed meristematic bulk tissue (MBT) was obtained. Lowering the levels of growth regulators resulted in redifferentiation of shoots, which elongated, rooted, developed into morphologically normal plants and set seeds normally. With a frequency ranging between 37 and 82% the nodes raised from in vitro grown plants were proliferated into MBT independent of TDZ concentration, cultivar and species. The average number of shoots per responding node in different cultivars was 7–15 in barley and 1–6 in wheat after 12–14 weeks. Nodes from greenhouse grown plants mainly responded for callus formation with poor development of MBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

IBA:

Indole-3-butyric acid

MBT:

Meristematic bulk tissue

MS:

Murashige and Skoog

NSS:

Nodal shoot segment

Picloram:

4-amino-3,5,6-trichloropicolinic acid

TDZ:

Thidiazuron

References

  • Ahmad A, Zhong H, Wang W, Sticklen MB (2002) Shoot apical meristem: Regeneration and morphogenesis in wheat (Triticum aestivum L.). In Vitro Cell Dev Biol Plant 38:163–167

    Article  Google Scholar 

  • Akula C, Akula A, Henry R (1999) Improved regeneration efficiency from mature embryos of barley cultivars. Biol Plant 42:505–513

    Article  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil IK (1996) Accelerated production of transgenic wheat (Triticum aestivum L.). Plant Cell Rep 16:12–17

    CAS  Google Scholar 

  • Barro F, Martin A, Lazzeri PA, Barcelo P (1999) Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tridordeum. Euphytica 108:161–167

    Article  Google Scholar 

  • Becher T, Haberland G, Koop H-U (1992) Callus formation and plant regeneration in standard and microexplants from seedlings of barley (Hordeum vulgare L.). Plant Cell Rep 11:39–43

    Article  Google Scholar 

  • Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425

    Article  Google Scholar 

  • Bregitzer P, Zhang S, Cho M-J, Lemaux PG (2002) Reduced somaclonal variation in barley is associated with culturing highly differentiated, meristematic tissues. Crop Sci 42:1303–1308

    Article  Google Scholar 

  • Chand S, Sahrawat AK (2000) Efficient plant regeneration from root callus tissues of barley (Hordeum vulgare L.). J Plant Physiol 156:401–407

    CAS  Google Scholar 

  • Cheng T-Y, Smith HH (1975) Organogenesis from callus culture of Hordeum vulgare. Planta 123:307–310

    Article  Google Scholar 

  • Choi HW, Lemaux PG, Cho M-J (2000) Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Sci 40:524–533

    Article  Google Scholar 

  • Dahleen LS, Okubara PA, Blechl AE (2001) Transgenic approaches to combat Fusarium Head Blight in wheat and barley. Crop Sci 41:628–637

    Article  Google Scholar 

  • Fang Y-D, Akula C, Altpeter F (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J Plant Physiol 159:1131–1138

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2004) TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2,4-D. Plant Cell Tissue Organ Cult 76:29–33

    Article  CAS  Google Scholar 

  • Ganeshan S, Baga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN (2003) Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare L.). Plant Cell Tissue Organ Cult 73:57–64

    Article  CAS  Google Scholar 

  • Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362

    Article  PubMed  CAS  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Janakiraman V, Steinau M, McCoy SB, Trick HN (2002) Recent advances in wheat transformation. In Vitro Cell Dev Biol Plant 38:404–414

    Article  CAS  Google Scholar 

  • Jähne-Gärtner A, Lörz H (1996) In vitro regeneration systems of barley (Hordeum vulgare L.). Plant Tissue Cult Biotechnol 12:11–23

    Google Scholar 

  • Jelaska S, Rengel Z, Cesar V (1984) Plant regeneration from mesocotyl callus of Hordeum vulgare L. Plant Cell Rep 3:125–129

    Article  Google Scholar 

  • Lin C-S, Chang W-C (1998) Micropropagation of Bambusa edulis through nodal explants of field-grown culms and flowering of regenerated plantlets. Plant Cell Rep 17:617–620

    Article  CAS  Google Scholar 

  • Lu C-Y (1993) The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol Plant 29:92–96

    Article  Google Scholar 

  • Lupotto E (1984) Callus induction and plant regeneration from barley mature embryos. Ann Bot 54:523–529

    Google Scholar 

  • Mendoza MG, Kaeppler HF (2002) Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev Biol Plant 38:39–45

    Article  CAS  Google Scholar 

  • Müller B, Schulze J, Wegner U (1989) Establishment of barley cell suspension cultures of mesocotyl origin suitable for isolation of dividing protoplasts. Biochem Physiol Pflanzen 185:123–130

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    CAS  Google Scholar 

  • O’Hara JF, Street HE (1978) Wheat callus culture: the initiation, growth and organogenesis of callus derived from various explant sources. Ann Bot 42:1029–1038

    Google Scholar 

  • Repellin A, Baga M, Jauhar PP, Chibbar RN (2001) Genetic enrichment of cereal crops via alien gene transfer: New challenges. Plant Cell Tissue Organ Cult 64:159–183

    Article  CAS  Google Scholar 

  • Sahrawat AK, Chand S (2004) High frequency plant regeneration from coleoptile tissue of barley (Hordeum vulgare L.). Plant Sci 167:27–34

    Article  CAS  Google Scholar 

  • Schütze R, Ryschka U, Leike H (1984) Kallusinduktion und Morphogenese in Kalluskulturen von Avena. 2. Mitt. Apikalmeristeme und Nodien. Arch Züchtungsforsch 14:77–84

    Google Scholar 

  • Shan X, Li D, Qu R (2000) Thidiazuron promotes in vitro regeneration of wheat and barley. In Vitro Cell Dev Biol Plant 36:207–210

    Article  CAS  Google Scholar 

  • Sharma VK, Hänsch R, Mendel RR, Schulze J (2004) A highly efficient plant regeneration system through multiple shoot differentiation from commercial cultivars of barley (Hordeum vulgare L.) using meristematic shoot segments excised from germinated mature embryos. Plant Cell Rep 23:9–16

    PubMed  CAS  Google Scholar 

  • Sharma VK, Hänsch R, Mendel RR, Schulze J (2005a) Influence of picloram and thidiazuron for high frequency plant regeneration in elite cultivars of wheat (Triticum aestivum L.) with long-term retention of morphogenecity using meristematic shoot segments. Plant Breed 124:242–246

    Article  CAS  Google Scholar 

  • Sharma VK, Hänsch R, Mendel RR, Schulze J (2005b) Seasonal effect on tissue culture response and plant regeneration frequency from non-bombarded and bombarded immature scutella of barley (Hordeum vulgare L.) harvested from controlled environment. Plant Cell Tissue Organ Cult 81:19–26

    Article  Google Scholar 

  • Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320–328

    Article  PubMed  CAS  Google Scholar 

  • Sticklen MB, Oraby HF (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol Plant 41:187–200

    Article  CAS  Google Scholar 

  • Trione EJ, Jones LE, Metzger RJ (1968) In vitro culture of somatic wheat callus tissue. Amer J Bot 55:529–531

    Article  Google Scholar 

  • Varshney A, Kant T, Kothari SL (1998) Plant regeneration from coleoptile tissue of wheat (Triticum aestivum L.). Biol Plant 40:137–141

    Article  Google Scholar 

  • Viertel K, Hess D (1996) Shoot tips of wheat as an alternative source for regenerable embryogenic callus cultures. Plant Cell Tissue Organ Cult 44:183–188

    Article  Google Scholar 

  • Wang C-T, Wei Z-M (2004) Embryogenesis and regeneration of green plantlets from wheat (Triticum aestivum L.) leaf base. Plant Cell Tissue Organ Cult 77:149–156

    Article  CAS  Google Scholar 

  • Weigel RC, Hughes KW (1985) Long term regeneration by somatic embryogenesis in barley (Hordeum vulgare L.) tissue cultures derived from apical meristem explants. Plant Cell Tissue Organ Cult 5:151–162

    Article  Google Scholar 

  • Wernicke W, Milkovits L (1984) Developmental gradients in wheat leaves—Response of leave segments in different genotypes cultured in vitro. J Plant Physiol 115:49–58

    CAS  Google Scholar 

  • Wernicke W, Milkovits L (1986) The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid. Protoplasma 131:131–141

    Article  CAS  Google Scholar 

  • Wilson HM, Foroughi-Wehr B, Mix G, Gaul H (1976) Callus cultures of Hordeum vulgare: Initiation, growth and organogenesis. Barley Genet Newsl 6:86–87

    Google Scholar 

  • Yao D-Y, Krikorian AD (1981) Multiplication of rice (Oryza sativa L.) from aseptically cultured nodes. Ann Bot 48:255–259

    Google Scholar 

  • Zhang S, Zhong H, Sticklen MB (1996) Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.). J Plant Physiol 148:667–671

    CAS  Google Scholar 

  • Zhang S, Williams-Carrier R, Jackson D, Lemaux PG (1998) Expression of CDC2Zm and KNOTTED1 during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barley (Hordeum vulgare L.). Planta 204:542–549

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Lemaux PG (2004) Molecular analysis of in vitro shoot organogenesis. Crit Rev Plant Sci 23:325–335

    Article  CAS  Google Scholar 

  • Zhong H, Srinivasan C, Sticklen MB (1992) In-vitro morphogenesis of corn (Zea mays L.) I: differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187:483–489

    Article  CAS  Google Scholar 

  • Zhong H, Wang W, Sticklen MB (1998) In vitro morphogenesis of Sorghum bicolor (L.) Moench: Efficient plant regeneration from shoot apices. J Plant Physiol 153:719–726

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Claudia Hasse and Anja Zander for excellent technical assistance. We thank Limagrain Nickerson for cv. Duet; Nordsaat Saatzuchtgesellschaft mbH for cv. Merlot, Saatzucht Schweiger GbR for cv. Florida and Deutsche Saatveredelung for cv. Triso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Schulze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Hänsch, R., Mendel, R.R. et al. Node-derived cultures with high-morphogenic competence in barley and wheat. Plant Cell Tiss Organ Cult 88, 21–33 (2007). https://doi.org/10.1007/s11240-006-9172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9172-5

Keywords

Profiles

  1. Robert Hänsch