Plant Cell, Tissue and Organ Culture

, Volume 82, Issue 3, pp 281–288 | Cite as

An efficient protocol for plant regeneration from protoplasts of the moss Atrichum undulatum P. Beauv in vitro

  • Lin-Hui Li
  • Xian-Ping Wang
  • Wan-Ru Hou
  • Xiang-Lin Liu
  • Yi-Kun HeEmail author


A system for plant regeneration from protoplasts of the moss, Atrichum undulatum (Hedw.) P. Beauv. in vitro, is first reported. Viable protoplasts were isolated at about 9 × 105 protoplasts g−1 fresh weight from 10 to 18 days protonemata. For regeneration of protoplasts, viable protoplasts were cultured in liquid–solid medium containing surface liquid medium MS (0.4 M mannitol) and subnatant solid medium Benecke (0.3 M mannitol) at 20 °C under a 16-h photoperiod white light after 12 h preculture in darkness at 20 °C. The great majority of protoplasts follow a regenerative sequence: formation of asymmetric cells in 2–3 days; division of the asymmetric cells to 2–3 cells in 4–5 days, and further develop to produce a new chloronemal filament in 15 days. Juvenile gametophyte can be visible in 20 days. The plating ratio of cell cluster regenerated from protoplasts reaches up to 45%. Transient expression experiments indicate the electroporation uptake of DNA is possible.


Atrichum undulatum (Hedw.) P. BeauvDNA uptake electroporation plant regeneration protoplast 



fluorescein diacetate


fresh weight




2-(N-morpholino) ethanesulphonic acid


Murashinge and Skoog


polyethlence glycol


plating efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araus, JC, Slafer, GA, Reynolds, MP, Roye, C 2002Plant breeding and drought in C3 cereals: what should we breed for?Ann. Bot.89925940CrossRefPubMedGoogle Scholar
  2. Bhatla, SC, Kiessling, J, Reski, R 2002Observation of polarity induction by cytochemical localization of phenylalkylamine-binding sites in regeneration protoplasts of the Physcomitrella patensProtoplasma21999105CrossRefPubMedGoogle Scholar
  3. Bopp, M, Brands, H 1964Versuche zur Protonemaentwicklong der LaubmoosePlanta62116136CrossRefGoogle Scholar
  4. Boyer, JS 1982Plant productivity and environmentScience218443448Google Scholar
  5. Boyer, JS 1996Advances in drought tolerance in plantsAdv. Agron.56187218Google Scholar
  6. Burgess, J, Linstead, PJ 1981Study on the growth and development of the moss Physcomitrella patens and its control by lightPlanta151331338CrossRefGoogle Scholar
  7. Chadha, BS, Kaur, R, Saini, HS, Singh, S 2000Characterization of hygromycin-resistant transformants of thermophilic fungusThermomyces lanuginosusWorld J. Microbiol. Biotechnol.16303306CrossRefGoogle Scholar
  8. Chalfie, M, Tu, Y, Euskirchen, G, Ward, WW, Prasher, DC 1994Green fluorescent protein as a marker for gene expressionScience263802805PubMedGoogle Scholar
  9. Chaves, M 2002Water stress in the regulation of photosynthesis in the fieldAnn. Bot.89907916CrossRefPubMedGoogle Scholar
  10. Chung, CT, Niemela, SL, Miller, RH 1989One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solutionProc. Natl. Sci. USA8621712175Google Scholar
  11. Cove, DJ, Quatrano, RS, Hartmann, E 1996The alignment of the asymmetry in regeneration protoplasts of the moss, Ceratodon purpurrus, is determined independently of axis polarityDevelopment122371379PubMedGoogle Scholar
  12. Edward, AG, Barbara, W 1979Regeneration of enzymatically isolated protoplasts of the mossFunaria hygrometrica L. sibthPlant Sci. Lett.154145CrossRefGoogle Scholar
  13. Gang, Y-Y, Du, G-S, Shi, D-J, Wang, M-Z, Li, X-D, Hua, Z-L 2003Establishment of in vitroregeneration system of the Atrichum mossesActa Bot. Sin.4514751480Google Scholar
  14. Grimsleg, NH, Ashton, NW, Cove, DJ 1997The production of somatic hybrids by protoplast fusion in the moss Physcomitrella patensMol. Gen. Genet.15497100CrossRefGoogle Scholar
  15. Holtorf, H, Hohe, A, Wang, HL, Jugold, M, Rausch, T, Duwenig, E, Reski, R 2002Promoter subfragments of the sugar beet V-type H+-ATPase subunit c isoform drive the expression of transgenes in the mossPhyscomitrella patensPlant Cell Rep.21341346CrossRefGoogle Scholar
  16. Hu, WW, Wong, SM, Loh, CS, Goh, CJ 1998Synergism in replication of cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) RNA in orchid protoplastsArch. Virol.14312651275CrossRefPubMedGoogle Scholar
  17. Jenkins, GI, Cove, DJ 1983Light requirements for regeneration of protoplasts of the moss Physcomitrella patensPlanta1573945CrossRefGoogle Scholar
  18. John, J. Weiland 2003Transformation of Pythium aphanidermatum to geneticin resistanceCurr. Genet.42344352CrossRefPubMedGoogle Scholar
  19. Kammerer, W, Cove, DJ 1996Genetic analysis of the effects of re-transformation of transgenic lines of the moss Physcomitrella patensMol. Gen. Genet.250380382CrossRefPubMedGoogle Scholar
  20. Kisaka, H, Sano, H, Kameya, T 1998Characterization of transgenic rice plants that expressrgp1, the gene for a small GFP-binding protein from riceTheor. Appl. Genet.97810815CrossRefGoogle Scholar
  21. Klaus, VS, Seven, K, Reski, R, Moffatt, B, Laloue, M 1998Cloning and characterization of an adenosine kinase from Physcomitrellainvolved in cytokinin metabolismThe Plant J.13249257CrossRefGoogle Scholar
  22. Knopp, M, Brandes, H 1964Versuche zur Analyse der Protonemaentwickling der LaubmoosePlanta62116136CrossRefGoogle Scholar
  23. Koprivova, A, Meyer, AJ, Schween, G, Herschbach, C, Reski, R, Kopriva, S 2002Functional knockout of the adenosine 5-phosphosulfate reductase gene in Physcomitrella patens revives: an old route of sulfate assimilationJ. Biol. Chem.2773219532201CrossRefPubMedGoogle Scholar
  24. Lee, JA, Stewart, GR 1971Desiccation injury in mosses. I. Intraspecific differences in the effect of moisture stress on photosynthesisNew Phytol.7010611068Google Scholar
  25. Murashige, T, Skoog, F 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plant15473497Google Scholar
  26. Negrutiu, I, Shillto, R, Potrykus, I, Biasini, G, Sala, F 1987Hybrid genes in the analysis of transformation: I. Setting up a simple method for direct gene transfer in plant protoplastsPlant Mol. Biol.8363373CrossRefGoogle Scholar
  27. Ober, ES, Luterbacher, MC 2002Genotypic variation for drought tolerance in Beta VulgarisAnn. Bot.89917924CrossRefPubMedGoogle Scholar
  28. Reutter, K, Atzorn, R, Hadeler, B 1998Expression of the bacterial ipt gene in Physcomitrellarescues mutations in budding and in plastid divisionPlanta206196203CrossRefGoogle Scholar
  29. Richardson, DAS 1981The Biology of MossBlackwellOxford, LondonGoogle Scholar
  30. Rother, S, Hadelar, B, Orsini, JM, Abel, WO, Reski, R 1994Fate of mutant macrochloroplasts in somatic hybridsJ. Plant Physiol.1437277Google Scholar
  31. Schaefer, DG, Zryd, JP, Knight, CD, Cove, DJ 1991Stable transformation of the moss Physcomitrella patensMol. Gen. Genet.226418424PubMedGoogle Scholar
  32. Schaefer, DG, Zryd, JP 1997Efficient gene targeting in the moss Physcomitrella patensPlant J.1111951206CrossRefPubMedGoogle Scholar
  33. Schween, G, Fleig, S, Reski, R 2002High-throughput-PCR screen of 15,000 transgeneic PhyscomitrellaplantsPlant Mol. Biol. Rep.2015Google Scholar
  34. Stumm, I, Meyer, Y, Abel, WO 1975Regeneration of the moss Physcomitrella patens(Hedw.) from isolated protoplastsPlant Sci. Lett.5113118CrossRefGoogle Scholar
  35. Widholm, JM 1972The use of fluorescein diacetate and phenosafranine for determining viability of culture plant cellsStain. Technol.47189190PubMedGoogle Scholar
  36. Wu, P-C 1998Bryolgical BiologyScientific Publishing CompanyBeijing, ChinaGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Lin-Hui Li
    • 1
    • 2
  • Xian-Ping Wang
    • 1
  • Wan-Ru Hou
    • 2
  • Xiang-Lin Liu
    • 1
  • Yi-Kun He
    • 1
    Email author
  1. 1.Department of BiologyCapital Normal UniversityBeijingChina
  2. 2.Department of BiologyChina West Normal UniversityNanChongChina

Personalised recommendations