Skip to main content
Log in

Expression of a cucumber class III chitinase and Nicotiana plumbaginifoliaclass I glucanase genes in transgenic potato plants

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The genes encoding for a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase were co-introduced into Slovak potato (Solanum tuberosum L.) breeding line 116/86 using Agrobacterium tumefaciens. For both transgenes the number of integrated copies and level of RNA expression were determined. These analyses demonstrated low variation and significant correlation in expression of the introduced transgenes. The effect of transgene expression on fungal susceptibility of transformants was evaluated in vitro. Hyphal extension assays revealed no obvious differences in the ability of extracts from transformants to inhibit growth of Rhizoctonia solani comparing to non-transformed potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen G, Spiker S & Thompson W (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol. Biol. 43: 241–256

    Google Scholar 

  • Alonso E, De Carvalho NF, Obregon P, Cheysen G, Inze D, Van Montago M & Castresana C (1995) Differential DNA binding activity to a promoter elements of the gn1 beta-1,3-glucanase gene in hypersensitivity reacting tobacco plants. Plant J. 7: 309–320

    PubMed  Google Scholar 

  • Ashfield T, Hammond-Kosack KE, Harrison K & Jones JDG (1994) Cf gene-dependent induction of a ß-1,3-glucanase promoter in tomato plants infected with Cladosporium fulvum. Mol. Plant-Microbe Interact. 7: 645–657

    Google Scholar 

  • Bauer M, Libantová J, Moravčíková J & Békésiová I (1998) Transgenic tobacco plants constitutively expressing acidic chitinase from cucumber. Biologia 53: 749–758

    Google Scholar 

  • Békésiová I, Nap JP & Mlynárová L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol. Biol. Rep. 17: 267–277

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quanties of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    PubMed  Google Scholar 

  • Covey SN & Al-Kaff NS (2000) Plant DNA viruses and gene silencing. Plant Mol. Biol. 43: 307–322

    PubMed  Google Scholar 

  • De Carvalho F, Gheysen G, Kushnir S, Van Montagu, Inzé D & Castresana C (1992) Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11: 2595–2602

    PubMed  Google Scholar 

  • De Loose M, Alliote T, Gheysen G, Genetello C, Gielen J, Soetaert P, Van Montagu M & Inze D (1988) Primary structure of a hormonally regulated ß-1,3-glucanase of Nicotiana plumbaginifolia. Gene 70: 13–23

    PubMed  Google Scholar 

  • Dean C, Favreau M, Tanmaki S, Bond-Nutter D, Dunsmuir P & Bedbrook J (1988a) Expression of tandem gene fusions in transgenic tobacco plants. Nucleic Acids Res. 16: 7601–7617

    PubMed  Google Scholar 

  • Dean C, Jones J, Favreau M, Dunsmuir P & Bedbrook J (1988b) Influences of flaking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucleic Acids Res. 16: 9267–9283

    PubMed  Google Scholar 

  • Fagard M & Vaucheret H (2000) Systemic silencing signal(s). Plant Mol. Biol. 43: 285–293

    PubMed  Google Scholar 

  • Hoekema A, Hirch PR, Hooykaas PJJ & Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Tiplasmid. Nature 30: 179–184

    Google Scholar 

  • Honeé G (1999) Engineered resistance against plant pathogens. Europ. J. Plant Pathol. 105: 319–336

    Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J & Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97–109

    PubMed  Google Scholar 

  • Ji C & Kuc J (1996) Antifungal activity of cucumber ß-1,3-glucanase and chitinase. Physiol. Mol. Plant Pathol. 49: 257–265

    Google Scholar 

  • Jongedijk E, Tigelaar H, Van Roekel JSC, Bres-Vloemans SA, Dekker I, Van Den Elzen PJM, Cornelissen BJC & Melchers L (1995) Synergistic activity of chitinases and ß-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85: 173–180

    Google Scholar 

  • Kim MG, Lee KO, Cheong NE, Choi YO, Jeong JH, Cho MJ, Kim SCH & Lee SY (1999) Molecular cloning and characterization of class III chitinase in pumpkin leaves, which strongly binds to regenerated chitin affinity gel. Plant Sci. 147: 157–163

    Google Scholar 

  • Kombrink E & Somssich IE (1995) Defence responses of plants to pathogens. Adv. Bot. Res. 21: 2–26

    Google Scholar 

  • Kubota M & Abiko K (2000) Induced resistance in cucumbers against Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani AG/2 by infection of the cotyledons. J. Phytopat. 149: 297–300

    Google Scholar 

  • Leech MJ, May K, Hallard D, Verpoorte R, De Luca V & Christou P (1998) Expression of two constitutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. Plant Mol. Biol. 38: 765–774

    PubMed  Google Scholar 

  • Libantová J, Bauer M, Mlynárová L, Moravčíková J & Békésiová I (1998) Transgenic tobacco and potato plants expressing basic vacuolar ß-1,3-glucanase from Nicotiana plumbaginifolia. Biologia 53: 739–748

    Google Scholar 

  • Meins FJR, Neuhas JM, Sperisen C & Ryals J (1993) The primary structure of plant pathogenesis-related glucanohydrolases and their genes. In: Fritig B & Legrand M (eds) Mechanisms of Plant Defense Responses (pp. 245–273). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Melchers LS, Ponstein AS, Sela-Buurlage MB, Vloemans SA & Cornelissen BJC (1993) In vitro antimicrobial activities of defense proteins and biotechnology. In: Fritig B & Legrand M (eds) Mechanisms of Plant Defense Responses (pp. 401– 410). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Métraux JP, Burkhart W, Moyer M, Dichner S, Middlesteadt W, Williams S, Payne G, Carnes M & Ryals J (1989) Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc. Natl. Acad. Sci. USA 86: 896–900

    PubMed  Google Scholar 

  • Mlynárová L, Jansen RC, Conner AJ, Stiekema WJ & Nap JP (1995) The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7: 599–609

    PubMed  Google Scholar 

  • Mlynárová L, Loonen A, Mietkiewska E, Jansen RC & Nap JP (2002) Assembly of two transgenes in an artificial chromatin domain gives highly coordinated expression in tobacco. Genetics 160: 727–740

    PubMed  Google Scholar 

  • Moravčiková J, Libantová J, Matušíková, Libiaková G, Nap JP & Mlynárová L (2003) Genetic transformation of Slovak cultivar of potato (Solanum tuberosum L.): efficiency and the behaviour of the transgene. Biologia 6, in press

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plantarum 15: 473–497

    Google Scholar 

  • Neuhaus JM, Friting B, Linthorst HJM, Meins F, Mikkelsen JD & Ryals J (1996) A revised nomenclature for chitinase genes. Plant Mol. Biol. Rep. 14: 102–104

    Google Scholar 

  • Paxton DJ (1991) Assays for antifungal activity. Meth. Plant Biochem. 6: 33–46

    Google Scholar 

  • Rojas-Herrera R & Loyola-Vargas VM (2002) Induction of class III chitinase in foliar explants of Coffea arabica L. during somatic embryogenesis and wounding. Plant Sci. 4: 705–711

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van Den Elzen PJM & Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinase and b-1,3-glucanase exhibit antifungal activity. Plant Physiol. 101: 857–863

    PubMed  Google Scholar 

  • Simon R, Priefer U & Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Tech. 1: 784–791

    Google Scholar 

  • Van Engelen A, Molthoff JW, Conner AJ, Nap JP, Pereira A & Stiekema WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transg. Res. 4: 288–290

    Google Scholar 

  • Vaucheret H, Elmayan T, Thierry D, Van der Geest A, Hall T, Conner AJ, Mlynarova L & Nap JP (1998) Flank matrix regions (MARs) from chicken, bean, yeast or tobacco do not prevent homology dependent trans-silencing in transgenic tobacco plants. Mol. Gen. Genet. 259: 388–392

    PubMed  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A & Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Envir. Microbiol. 8: 3031–3034

    Google Scholar 

  • Zhang YY & Punja ZK (1994) Induction and characterization of chitinase isoforms in cucumber (Cucumis sativum L.) effect of elicitors, wounding and pathogen inoculation. Plant Sci. 2: 141–150

    Google Scholar 

  • Zupan J, Muth TR, Draper O & Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23: 11–28

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Moravčíková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moravčíková, J., Matušíková, I., Libantová, J. et al. Expression of a cucumber class III chitinase and Nicotiana plumbaginifoliaclass I glucanase genes in transgenic potato plants. Plant Cell, Tissue and Organ Culture 79, 161–168 (2004). https://doi.org/10.1007/s11240-004-0656-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-004-0656-x

Navigation