Skip to main content
Log in

Differential platelet activation through an interaction with spike proteins of different SARS-CoV-2 variants

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

COVID-19 disease is associated with an increased risk of thrombotic complications, which contribute to high short-term mortality. Patients with COVID-19 demonstrate enhanced platelet turnover and reactivity, which may have a role in the development of thrombotic events and disease severity. Evidence has suggested direct interaction between SARS-CoV-2 and platelets, resulting in platelets activation. Here, we compare the effect of various SARS-CoV-2 spike variants on platelet activation. Engineered lentiviral particles were pseudotyped with spike SARS-CoV-2 variants and incubated with Platelet Rich Plasma obtained from healthy individuals. The pseudotyped SARS-CoV-2 exhibiting the wild-type Wuhan-Hu spike protein stimulated platelets to increase expression of the surface CD62P and activated αIIbβ3 markers by 3.5 ± 1.2 and 3.3 ± 0.7 fold, respectively (P = 0.004 and 0.003). The Delta variant induced much higher levels of platelet activation; CD62P expression was increased by 6.6 ± 2.2 fold and activated αIIbβ3 expression was increased by 5.0 ± 1.5 fold (P = 0.005 and 0.026, respectively). The Omicron BA.1 and the Alpha variants induced the lowest level of activation; CD62P expression was increased by 1.7 ± 0.4 and 1.6 ± 0.9 fold, respectively (P = 0.003 and 0.008), and activated αIIbβ3 expression by 1.8 ± 1.1 and 1.6 ± 0.8, respectively (P = 0.003 and 0.001). The Omicron BA.2 variant induced an increase of platelets activation comparable to the Wuhan-Hu (2.8 ± 1.2 and 2.1 ± 1.3 fold for CD62P and activated αIIbβ3 markers, respectively). The results obtained for various COVID-19 variants are in correlation with the clinical severity and mortality reported for these variants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for Covid-19 (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–1720. https://doi.org/10.1056/NEJMoa2002032

    Article  CAS  PubMed  Google Scholar 

  2. Nahum J, Morichau-Beauchant T, Daviaud F, Echegut P, Fichet J, Maillet JM, Thierry S (2020) Venous thrombosis among critically ill patients with coronavirus disease 2019 (COVID-19). JAMA 3(5):e2010478. https://doi.org/10.1001/jamanetworkopen.2020.10478

    Article  Google Scholar 

  3. Nicolai L, Leunig A, Brambs S, Kaiser R, Weinberger T, Weigand M, Muenchhoff M, Hellmuth JC, Ledderose S, Schulz H, Scherer C, Rudelius M, Zoller M, Höchter D, Keppler O, Teupser D, Zwißler B, von Bergwelt-Baildon M, Kääb S, Massberg S, Pekayvaz K, Stark K (2020) Immunothrombotic dysregulation in COVID-19 Pneumonia is associated with respiratory failure and coagulopathy. Circulation 142(12):1176–1189. https://doi.org/10.1161/CIRCULATIONAHA.120.048488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Conway EM, Mackman N, Warren RQ, Wolberg AS, Mosnier LO, Campbell RA, Gralinski LE, Rondina MT, van de Veerdonk FL, Hoffmeister KM, Griffin JH, Nugent D, Moon K, Morrissey JH (2022) Understanding COVID-19-associated coagulopathy. Nat Rev Immunol 22(10):639–649. https://doi.org/10.1038/s41577-022-00762-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bangalore S, Sharma A, Slotwiner A, Yatskar L, Harari R, Shah B, Ibrahim H, Friedman GH, Thompson C, Alviar CL, Chadow HL, Fishman GI, Reynolds HR, Keller N, Hochman JS (2020) ST-segment elevation in patients with Covid-19—a case series. N Engl J Med 382(25):2478–2480. https://doi.org/10.1056/NEJMc2009020

    Article  PubMed  Google Scholar 

  6. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, De Leacy RA, Shigematsu T, Ladner TR, Yaeger KA, Skliut M, Weinberger J, Dangayach NS, Bederson JB, Tuhrim S, Fifi JT (2020) Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med 382(20):e60. https://doi.org/10.1056/NEJMc2009787

    Article  PubMed  Google Scholar 

  7. Cohen A, Harari E, Cipok M, Laish-Farkash A, Bryk G, Yahud E, Sela Y, Lador NK, Mann T, Mayo A, Lev EI (2021) Immature platelets in patients hospitalized with Covid-19. J Thromb Thrombolysis 51(3):608–616. https://doi.org/10.1007/s11239-020-02290-6

    Article  CAS  PubMed  Google Scholar 

  8. Cohen A, Harari E, Yahud E, Cipok M, Bryk G, Lador NK, Mann T, Mayo A, Lev EI (2021) Immature platelets in patients with Covid-19: association with disease severity. J Thromb Thrombolysis 52(3):708–714. https://doi.org/10.1007/s11239-021-02560-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18(4):844–847. https://doi.org/10.1111/jth.14768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agrati C, Bordoni V, Sacchi A, Petrosillo N, Nicastri E, Del Nonno F, D’Offizi G, Palmieri F, Marchioni L, Capobianchi MR, Antinori A, Ippolito G, Bibas M (2021) Elevated P-selectin in severe Covid-19: considerations for therapeutic options. Mediterr J Hematol Infect Dis 13(1):e2021016. https://doi.org/10.4084/MJHID.2021.016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A (2022) Platelets in viral infections—brave soldiers or Trojan horses. Front Immunol 13:856713. https://doi.org/10.3389/fimmu.2022.856713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, Petrey AC, Tolley ND, Guo L, Cody M, Weyrich AS, Yost CC, Rondina MT, Campbell RA (2020) Platelet gene expression and function in patients with COVID-19. Blood 136(11):1317–1329. https://doi.org/10.1182/blood.2020007214

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, Zhang S, Fan Z, Dong J, Yuan Z, Ding Z, Zhang Y, Hu L (2020) SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 13(1):120. https://doi.org/10.1186/s13045-020-00954-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bongiovanni D, Klug M, Lazareva O, Weidlich S, Biasi M, Ursu S, Warth S, Buske C, Lukas M, Spinner CD, Scheidt MV, Condorelli G, Baumbach J, Laugwitz KL, List M, Bernlochner I (2021) SARS-CoV-2 infection is associated with a pro-thrombotic platelet phenotype. Cell Death Dis 12(1):50. https://doi.org/10.1038/s41419-020-03333-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR, Righy C, Franco S, Souza TML, Kurtz P, Bozza FA, Bozza PT (2020) Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136(11):1330–1341. https://doi.org/10.1182/blood.2020007252

    Article  CAS  PubMed  Google Scholar 

  16. Koupenova M, Corkrey HA, Vitseva O, Tanriverdi K, Somasundaran M, Liu P, Soofi S, Bhandari R, Godwin M, Parsi KM, Cousineau A, Maehr R, Wang JP, Cameron SJ, Rade J, Finberg RW, Freedman JE (2021) SARS-CoV-2 initiates programmed cell death in platelets. Circ Res 129(6):631–646. https://doi.org/10.1161/CIRCRESAHA.121.319117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maugeri N, De Lorenzo R, Clementi N, Antonia Diotti R, Criscuolo E, Godino C, Tresoldi C, Angels For Covid-BioB Study Group B, Bonini C, Clementi M, Mancini N, Ciceri F, Rovere-Querini P, Manfredi AA (2022) Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19. J Thromb Haemost 20(2):434–448. https://doi.org/10.1111/jth.15575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu A, Real F, Capron C, Rosenberg AR, Silvin A, Dunsmore G, Zhu J, Cottoignies-Callamarte A, Massé JM, Moine P, Bessis S, Godement M, Geri G, Chiche JD, Valdebenito S, Belouzard S, Dubuisson J, Lorin de la Grandmaison G, Chevret S, Ginhoux F, Eugenin EA, Annane D, Bordé EC, Bomsel M (2022) Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell Mol Life Sci 79(7):365. https://doi.org/10.1007/s00018-022-04318-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen S, Zhang J, Fang Y, Lu S, Wu J, Zheng X, Deng F (2021) SARS-CoV-2 interacts with platelets and megakaryocytes via ACE2-independent mechanism. J Hematol Oncol 14(1):72. https://doi.org/10.1186/s13045-021-01082-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, COVID-19 Genomics UK Consortium, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL (2023) SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 21(3):162–177. https://doi.org/10.1038/s41579-022-00841-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wrenn JO, Pakala SB, Vestal G, Shilts MH, Brown HM, Bowen SM, Strickland BA, Williams T, Mallal SA, Jones ID, Schmitz JE, Self WH, Das SR (2022) COVID-19 severity from Omicron and delta SARS-CoV-2 variants. Influenza Other Respir Viruses 16(5):832–836. https://doi.org/10.1111/irv.12982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Chen N, Zhao D, Zhang J, Hu Z, Tao Z (2022) Clinical characteristics of COVID-19 patients infected by the Omicron variant of SARS-CoV-2. Front Med (Lausanne) 9:912367. https://doi.org/10.3389/fmed.2022.912367

    Article  PubMed  Google Scholar 

  23. Hu Z, Huang X, Zhang J, Fu S, Ding D, Tao Z (2022) Differences in clinical characteristics between delta variant and wild-type SARS-CoV-2 infected patients. Front Med (Lausanne) 8:792135. https://doi.org/10.3389/fmed.2021.792135

    Article  PubMed  Google Scholar 

  24. Lauring AS, Tenforde MW, Chappell JD, Gaglani M, Ginde AA, McNeal T, Ghamande S, Douin DJ, Talbot HK, Casey JD, Mohr NM, Zepeski A, Shapiro NI, Gibbs KW, Files DC, Hager DN, Shehu A, Prekker ME, Erickson HL, Exline MC, Gong MN, Mohamed A, Johnson NJ, Srinivasan V, Steingrub JS, Peltan ID, Brown SM, Martin ET, Monto AS, Khan A, Hough CL, Busse LW, Ten Lohuis CC, Duggal A, Wilson JG, Gordon AJ, Qadir N, Chang SY, Mallow C, Rivas C, Babcock HM, Kwon JH, Halasa N, Grijalva CG, Rice TW, Stubblefield WB, Baughman A, Womack KN, Rhoads JP, Lindsell CJ, Hart KW, Zhu Y, Adams K, Schrag SJ, Olson SM, Kobayashi M, Verani JR, Patel MM, Self WH, Influenza and Other Viruses in the Acutely Ill (IVY) Network (2022) Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from Omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. BMJ 376:e069761. https://doi.org/10.1136/bmj-2021-069761

    Article  PubMed  Google Scholar 

  25. Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S, Seaman SR, Harris RJ, Hope R, Lopez-Bernal J, Gallagher E, Charlett A, De Angelis D, Presanis AM, Dabrera G (2022) COVID-19 genomics UK (COG-UK) consortium. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 22(1):35–42. https://doi.org/10.1016/S1473-3099(21)00475-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuzmina A, Wattad S, Khalaila Y, Ottolenghi A, Rosental B, Engel S, Rosenberg E, RSARS Taube CoV-2 (2021) Delta variant exhibits enhanced infectivity and a minor decrease in neutralization sensitivity to convalescent or post-vaccination sera. iScience 24(12):103467. https://doi.org/10.1016/j.isci.2021.103467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuzmina A, Wattad S, Engel S, Rosenberg E, Taube R (2022) Functional analysis of spike from SARS-CoV-2 variants reveals the role of distinct mutations in neutralization potential and viral infectivity. Viruses 14(4):803. https://doi.org/10.3390/v14040803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuzmina A, Khalaila Y, Voloshin O, Keren-Naus A, Boehm-Cohen L, Raviv Y, Shemer-Avni Y, Rosenberg E, Taube R (2021) SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host Microbe 29(4):522-528.e2. https://doi.org/10.1016/j.chom.2021.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boonyawat K, Chantrathammachart P, Numthavaj P, Nanthatanti N, Phusanti S, Phuphuakrat A, Niparuck P, Angchaisuksiri P (2020) Incidence of thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Thromb J 18(1):34. https://doi.org/10.1186/s12959-020-00248-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lippi G, Plebani M, Henry BM (2020) Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 506:145–148. https://doi.org/10.1016/j.cca.2020.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grobbelaar LM, Kruger A, Venter C, Burger EM, Laubscher GJ, Maponga TG, Kotze MJ, Kwaan HC, Miller JB, Fulkerson D, Huff W, Chang E, Wiarda G, Bunch CM, Walsh MM, Raza S, Zamlut M, Moore HB, Moore EE, Neal MD, Kell DB, Pretorius E (2022) Relative hypercoagulopathy of the SARS-CoV-2 beta and delta variants when compared to the less severe Omicron variants is related to TEG parameters, the extent of fibrin amyloid microclots, and the severity of clinical illness. Semin Thromb Hemost 48(7):858–868. https://doi.org/10.1055/s-0042-1756306

    Article  CAS  PubMed  Google Scholar 

  32. Taylor CA, Patel K, Pham H, Whitaker M, Anglin O, Kambhampati AK, Milucky J, Chai SJ, Kirley PD, Alden NB, Armistead I, Meek J, Yousey-Hindes K, Anderson EJ, Openo KP, Teno K, Weigel A, Monroe ML, Ryan PA, Henderson J, Nunez VT, Bye E, Lynfield R, Poblete M, Smelser C, Barney GR, Spina NL, Bennett NM, Popham K, Billing LM, Shiltz E, Abdullah N, Sutton M, Schaffner W, Talbot HK, Ortega J, Price A, Garg S, Havers FP, COVID-NET Surveillance Team (2021) Severity of disease among adults hospitalized with laboratory-confirmed COVID-19 before and during the period of SARS-CoV-2 B16172 (Delta) predominance—COVID-NET, 14 States, January–August 2021. MMWR Morb Mortal Wkly Rep 70(43):1513–1519. https://doi.org/10.15585/mmwr.mm7043e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sheikh A, Kerr S, Woolhouse M, McMenamin J, Robertson C, EAVE II Collaborators (2022) Severity of Omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): a national cohort study with nested test-negative design. Lancet Infect Dis 22(7):959–966. https://doi.org/10.1016/S1473-3099(22)00141-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan Y, Li X, Zhang L, Wan S, Zhang L, Zhou F (2022) SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther 7(1):141. https://doi.org/10.1038/s41392-022-00997-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, Amoako DG, Everatt J, Bhiman JN, Scheepers C, Tebeila N, Chiwandire N, du Plessis M, Govender N, Ismail A, Glass A, Mlisana K, Stevens W, Treurnicht FK, Makatini Z, Hsiao NY, Parboosing R, Wadula J, Hussey H, Davies MA, Boulle A, von Gottberg A, Cohen C (2022) Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa: a data linkage study. Lancet 399(10323):437–446. https://doi.org/10.1016/S0140-6736(22)00017-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ulloa AC, Buchan SA, Brown KA (2022) SARS-CoV-2 Omicron variant severity in Ontario Canada-Reply. JAMA 328(4):395–396. https://doi.org/10.1001/jama.2022.9262

    Article  CAS  PubMed  Google Scholar 

  37. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, King NP, Veesler D, Bloom JD (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182(5):1295-1310.e20. https://doi.org/10.1016/j.cell.2020.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Geng Q, Shi K, Ye G, Zhang W, Aihara H, Li F (2022) Structural Basis for human receptor recognition by SARS-CoV-2 Omicron variant BA.1. J Virol 96(8):e0024922. https://doi.org/10.1128/jvi.00249-22

    Article  CAS  PubMed  Google Scholar 

  39. Han P, Li L, Liu S, Wang Q, Zhang D, Xu Z, Han P, Li X, Peng Q, Su C, Huang B, Li D, Zhang R, Tian M, Fu L, Gao Y, Zhao X, Liu K, Qi J, Gao GF, Wang P (2022) Receptor binding and complex structures of human ACE2 to spike RBD from Omicron and delta SARS-CoV-2. Cell 185(4):630-640.e10. https://doi.org/10.1016/j.cell.2022.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Cai Y, Lavine CL, Peng H, Zhu H, Anand K, Tong P, Gautam A, Mayer ML, Rits-Volloch S, Wang S, Sliz P, Wesemann DR, Yang W, Seaman MS, Lu J, Xiao T, Chen B (2022) Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Rep 39(4):110729. https://doi.org/10.1016/j.celrep.2022.110729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, Zepeda SK, Papa G, Kemp SA, Ikeda T, Toyoda M, Tan TS, Kuramochi J, Mitsunaga S, Ueno T, Shirakawa K, Takaori-Kondo A, Brevini T, Mallery DL, Charles OJ, CITIID-NIHR BioResource COVID-19 Collaboration; Genotype to Phenotype Japan (G2P-Japan) Consortium; Ecuador-COVID19 Consortium, Bowen JE, Joshi A, Walls AC, Jackson L, Martin D, Smith KGC, Bradley J, Briggs JAG, Choi J, Madissoon E, Meyer KB, Mlcochova P, Ceron-Gutierrez L, Doffinger R, Teichmann SA, Fisher AJ, Pizzuto MS, de Marco A, Corti D, Hosmillo M, Lee JH, James LC, Thukral L, Veesler D, Sigal A, Sampaziotis F, Goodfellow IG, Matheson NJ, Sato K, Gupta RK (2022) Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603(7902):706–714. https://doi.org/10.1038/s41586-022-04474-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffmann M, Zhang L, Pöhlmann S (2022) Omicron: master of immune evasion maintains robust ACE2 binding. Signal Transduct Target Ther 7(1):118. https://doi.org/10.1038/s41392-022-00965-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Campbell RA, Boilard E, Rondina MT (2021) Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets? J Thromb Haemost 19(1):46–50. https://doi.org/10.1111/jth.15156

    Article  CAS  PubMed  Google Scholar 

  44. Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, Limami Y, Zaid N, Sadki K, Ben El Haj R, Mahir W, Belayachi L, Belefquih B, Benouda A, Cheikh A, Langlois MA, Cherrah Y, Flamand L, Guessous F, Boilard E (2020) Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ Res 127(11):1404–1418. https://doi.org/10.1161/CIRCRESAHA.120.317703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carnevale R, Cammisotto V, Bartimoccia S, Nocella C, Castellani V, Bufano M, Loffredo L, Sciarretta S, Frati G, Coluccia A, Silvestri R, Ceccarelli G, Oliva A, Venditti M, Pugliese F, Maria Mastroianni C, Turriziani O, Leopizzi M, D’Amati G, Pignatelli P, Violi F (2023) Toll-like receptor 4-dependent platelet-related thrombosis in SARS-CoV-2 infection. Circ Res 132(3):290–305. https://doi.org/10.1161/CIRCRESAHA.122.321541

    Article  CAS  PubMed  Google Scholar 

  46. Sciaudone A, Corkrey H, Humphries F, Koupenova M (2023) Platelets and SARS-CoV-2 during COVID-19: immunity, thrombosis, and beyond. Circ Res 132(10):1272–1289. https://doi.org/10.1161/CIRCRESAHA.122.321930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Banerjee M, Huang Y, Joshi S, Popa GJ, Mendenhall MD, Wang QJ, Garvy BA, Myint T, Whiteheart SW (2020) Platelets endocytose viral particles and are activated via TLR (toll-like receptor) signaling. Arterioscler Thromb Vasc Biol 40(7):1635–1650. https://doi.org/10.1161/ATVBAHA.120.314180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koupenova M, Corkrey HA, Vitseva O, Manni G, Pang CJ, Clancy L, Yao C, Rade J, Levy D, Wang JP, Finberg RW, Kurt-Jones EA, Freedman JE (2019) The role of platelets in mediating a response to human influenza infection. Nat Commun 10(1):1780. https://doi.org/10.1038/s41467-019-09607-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laurent P, Yang C, Rendeiro AF, Nilsson-Payant BE, Carrau L, Chandar V, Bram Y, tenOever BR, Elemento O, Ivashkiv LB, Schwartz RE, Barrat FJ (2022) Sensing of SARS-CoV-2 by pDCs and their subsequent production of IFN-I contribute to macrophage-induced cytokine storm during COVID-19. Sci Immunol 7(75):eadd4906. https://doi.org/10.1126/sciimmunol.add4906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F (2020) Revisiting platelets and toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int J Mol Sci 21(17):6150. https://doi.org/10.3390/ijms21176150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rivadeneyra L, CarestiaA EJ, Pozner RG, Fondevila C, Negrotto S, Schattner M (2014) Regulation of platelet responses triggered by toll-like receptor 2 and 4 ligands is another non-genomic role of nuclear factor-kappaB. Thromb Res 133(2):235–243. https://doi.org/10.1016/j.thromres.2013.11.028

    Article  CAS  PubMed  Google Scholar 

  52. Spinelli SL, Casey AE, Pollock SJ, Gertz JM, McMillan DH, Narasipura SD, Mody NA, King MR, Maggirwar SB, Francis CW, Taubman MB, Blumberg N, Phipps RP (2010) Platelets and megakaryocytes contain functional nuclear factor-kappaB. Arterioscler, Thromb, Vasc Biol 30(3):591–598. https://doi.org/10.1161/ATVBAHA.109.197343

    Article  CAS  PubMed  Google Scholar 

  53. Malaver E, Romaniuk MA, D’Atri LP, Pozner RG, Negrotto S, Benzadón R, Schattner M (2009) NF-kappaB inhibitors impair platelet activation responses. J Thromb Haemost 7(8):1333–1343. https://doi.org/10.1111/j.1538-7836.2009.03492.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziv Sevilya.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles off the Declaration of Helsinki. Approval was granted by the Ethics Committee of Assuta Ashdod medical center.

Consent to participate

Informed consent was obtained from all individuals participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevilya, Z., Kuzmina, A., Cipok, M. et al. Differential platelet activation through an interaction with spike proteins of different SARS-CoV-2 variants. J Thromb Thrombolysis 56, 538–547 (2023). https://doi.org/10.1007/s11239-023-02891-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-023-02891-x

Keywords

Navigation