Skip to main content
Log in

Relations between left atrial appendage contrast retention and thromboembolic risk in patients with atrial fibrillation

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Left atrial appendage (LAA), a blind pouch, accounts for more than 90% of the source of cardiac thrombus formation. Contrast retention (CR) in the LAA has been frequently observed during left atrial appendage occlusion (LAAO) procedures, especially in patients with stroke history. This study was designed to assess the relations between LAA contrast retention and thrombogenesis risk of the LAA in patients with non-valvular atrial fibrillation. A total of 132 consecutive patients who underwent LAAO were enrolled. The data collected from computed tomography (CT), transthoracic echocardiography (TTE), transesophageal echocardiography (TEE) and blood samples were analyzed. Univariate and multivariate logistic regression models were constructed to assess the association between CR, left atrial appendage thrombus (LAAT) and other factors. Contrast retention was observed in 33 patients, accounting for 25% of the population. Compared to the non-CR group, patients in the CR group had a larger left atrium anteroposterior diameter (49.64 ± 11.57 vs. 42.42 ± 7.04, P = 0.002), higher CHADS2 (3.88 ± 0.99 vs. 2.97 ± 1.35, P = 0.001) and CHA2DS2-VASc scores (5.79 ± 1.14 vs. 4.89 ± 1.56, P = 0.003), a higher rate of prior stroke (90.9% vs. 66.7%, P = 0.007), more LAA lobes (3.13 ± 1.18 vs. 2.64 ± 1.12, P = 0.038), and a higher prevalence of LAAT (63.6% vs. 13.1%, P < 0.001). After having adjusted the logistic model, only contrast retention, LAA cauliflower morphology and left ventricular ejection fraction (LVEF) were independently associated with LAAT. Patients with LAA contrast retention have a higher risk of left atrial appendage thrombosis. Contrast retention may be a cardiac factor strongly associated with cardiogenic stroke.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available at https://wws.lanzous.com/iKDO9jjiggd.

Abbreviations

AF:

Atrial fibrillation

LAA:

Left atrial appendage

CR:

Contrast retention

LAAO:

Left atrial appendage occlusion

LAAT:

Left atrial appendage thrombus

CHADS2 :

Congestive heart failure, Hypertension, Age > 75, Diabetes mellitus, and prior Stroke or transient ischemic attack

CHA2DS2-VASc:

Congestive heart failure, Hypertension, Age (> 75 = 2 points, 65 to 74 = 1 point, < 65 = 0 point), Diabetes mellitus, prior Stroke or transient ischemic attack, female gender

HAS-BLED:

Hypertension, Abnormal renal and liver function, Stroke, Bleeding, Labile INRs, Elderly, Drugs or alcohol

TTE:

Transthoracic echocardiography

TEE:

Transesophageal echocardiography

OR:

Odds ratio

CI:

Confidence interval

TIA:

Transient ischemia attack

LAAPD:

Left atria anteroposterior diameter

CFD:

Contrast filling defect

ROC:

Operating characteristic curve

AUC:

Area under the curve

References

  1. Krijthe BP, Kunst A, Benjamin EJ, Lip GY, Franco OH, Hofman A, Witteman JC, Stricker BH, Heeringa J (2013) Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J 34(35):2746–2751. https://doi.org/10.1093/eurheartj/eht280

    Article  PubMed  PubMed Central  Google Scholar 

  2. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward JB, Tsang TS (2006) Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 114(2):119–125. https://doi.org/10.1161/circulationaha.105.595140

    Article  PubMed  Google Scholar 

  3. Tse HF, Wang YJ, Ahmed Ai-Abdullah M, Pizarro-Borromeo AB, Chiang CE, Krittayaphong R, Singh B, Vora A, Wang CX, Zubaid M, Clemens A, Lim P, Hu D (2013) Stroke prevention in atrial fibrillation–an Asian stroke perspective. Heart Rhythm 10(7):1082–1088. https://doi.org/10.1016/j.hrthm.2013.03.017

    Article  PubMed  Google Scholar 

  4. Wolf PA, Abbott RD, Kannel WB (1991) Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22(8):983–988. https://doi.org/10.1161/01.str.22.8.983

    Article  CAS  PubMed  Google Scholar 

  5. Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE (1995) The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med 98(5):476–484. https://doi.org/10.1016/s0002-9343(99)80348-9

    Article  CAS  PubMed  Google Scholar 

  6. Santangeli P, Di Biase L, Bai R, Mohanty S, Pump A, Cereceda Brantes M, Horton R, Burkhardt JD, Lakkireddy D, Reddy YM, Casella M, Dello Russo A, Tondo C, Natale A (2012) Atrial fibrillation and the risk of incident dementia: a meta-analysis. Heart Rhythm 9(11):1761–1768. https://doi.org/10.1016/j.hrthm.2012.07.026

    Article  PubMed  Google Scholar 

  7. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D (1998) Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98(10):946–952. https://doi.org/10.1161/01.cir.98.10.946

    Article  CAS  PubMed  Google Scholar 

  8. Thrall G, Lane D, Carroll D, Lip GY (2006) Quality of life in patients with atrial fibrillation: a systematic review. Am J Med 119(5):448.e441–419. https://doi.org/10.1016/j.amjmed.2005.10.057

    Article  Google Scholar 

  9. Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Hart RG (1998) Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation: Stroke Prevention in Atrial Fibrillation III Investigators. J Am Coll Cardiol 31(7):1622–1626. https://doi.org/10.1016/s0735-1097(98)00146-6

    Article  CAS  PubMed  Google Scholar 

  10. Hart RG, Pearce LA, Aguilar MI (2007) Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 146(12):857–867. https://doi.org/10.7326/0003-4819-146-12-200706190-00007

    Article  PubMed  Google Scholar 

  11. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, Camm AJ, Weitz JI, Lewis BS, Parkhomenko A, Yamashita T, Antman EM (2014) Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383(9921):955–962. https://doi.org/10.1016/s0140-6736(13)62343-0

    Article  CAS  PubMed  Google Scholar 

  12. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P (2016) 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37(38):2893–2962. https://doi.org/10.1093/eurheartj/ehw210

    Article  PubMed  Google Scholar 

  13. Sikorska A, Baran J, Pilichowska-Paszkiet E, Sikora-Frąc M, Kryński T, Piotrowski R, Stec S, Zaborska B, Kułakowski P (2015) Risk of left atrial appendage thrombus in patients scheduled for ablation for atrial fibrillation: beyond the CHA2DS2VASc score. Pol Arch Med Wewn 125(12):921–928. https://doi.org/10.20452/pamw.3213

    Article  PubMed  Google Scholar 

  14. Yao Y, Shang MS, Gao LJ, Zhao JH, Yang XH, Liu T, Tang RB, Jiang CX, Long DY, Ning M, Zhu H, Lv Q, Hu R, Du X, Dong JZ (2018) Elevated homocysteine increases the risk of left atrial/left atrial appendage thrombus in non-valvular atrial fibrillation with low CHA2DS2-VASc score. Europace 20(7):1093–1098. https://doi.org/10.1093/europace/eux189

    Article  PubMed  Google Scholar 

  15. Jaroch J, Kamińska-Kegel A, Brzezińska B, Kruszyńska E, Bociąga Z, Dudek K, Łoboz-Grudzień K (2016) Predictors of left atrial appendage thrombogenic milieu in patients subjected to transesophageal echocardiography prior to cardioversion of persistent atrial fibrillation. Pol Arch Med Wewn 126(1–2):25–31. https://doi.org/10.20452/pamw.3261

    Article  PubMed  Google Scholar 

  16. Quinn GR, Severdija ON, Chang Y, Singer DE (2017) Wide Variation in Reported Rates of Stroke Across Cohorts of Patients With Atrial Fibrillation. Circulation 135(3):208–219. https://doi.org/10.1161/circulationaha.116.024057

    Article  PubMed  Google Scholar 

  17. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ (2010) Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137(2):263–272. https://doi.org/10.1378/chest.09-1584

    Article  PubMed  Google Scholar 

  18. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ (2001) Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 285(22):2864–2870. https://doi.org/10.1001/jama.285.22.2864

    Article  CAS  PubMed  Google Scholar 

  19. Force CET (1986) Cardiogenic brain embolism: Cerebral Embolism Task Force. Arch Neurol 43(1), 71–84

    Article  Google Scholar 

  20. Blackshear JL, Odell JA (1996) Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg 61(2):755–759. https://doi.org/10.1016/0003-4975(95)00887-x

    Article  CAS  PubMed  Google Scholar 

  21. Ren JF, Marchlinski FE, Supple GE, Hutchinson MD, Garcia FC, Riley MP, Lin D, Zado ES, Callans DJ, Ferrari VA (2013) Intracardiac echocardiographic diagnosis of thrombus formation in the left atrial appendage: a complementary role to transesophageal echocardiography. Echocardiography 30(1):72–80. https://doi.org/10.1111/j.1540-8175.2012.01819.x

    Article  PubMed  Google Scholar 

  22. Hur J, Kim YJ, Lee HJ, Ha JW, Heo JH, Choi EY, Shim CY, Kim TH, Nam JE, Choe KO, Choi BW (2009) Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology 251(3):683–690. https://doi.org/10.1148/radiol.2513090794

    Article  PubMed  Google Scholar 

  23. Hur J, Kim YJ, Lee HJ, Nam JE, Hong YJ, Kim HY, Lee JW, Choi BW (2012) Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 263(3):688–695. https://doi.org/10.1148/radiol.12111691

    Article  PubMed  Google Scholar 

  24. Mohrs OK, Nowak B, Petersen SE, Welsner M, Rubel C, Magedanz A, Kauczor HU, Voigtlaender T (2006) Thrombus detection in the left atrial appendage using contrast-enhanced MRI: a pilot study. AJR Am J Roentgenol 186(1):198–205. https://doi.org/10.2214/ajr.04.1504

    Article  PubMed  Google Scholar 

  25. Ohyama H, Hosomi N, Takahashi T, Mizushige K, Osaka K, Kohno M, Koziol JA (2003) Comparison of magnetic resonance imaging and transesophageal echocardiography in detection of thrombus in the left atrial appendage. Stroke 34(10):2436–2439. https://doi.org/10.1161/01.Str.0000090350.73614.0f

    Article  PubMed  Google Scholar 

  26. Zhan Y, Joza J, Al Rawahi M, Barbosa RS, Samuel M, Bernier M, Huynh T, Thanassoulis G, Essebag V (2018) Assessment and management of the left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Can J Cardiol 34(3):252–261. https://doi.org/10.1016/j.cjca.2017.12.008

    Article  PubMed  Google Scholar 

  27. Kapłon-Cieślicka A, Budnik M, Gawałko M, Peller M, Gorczyca I, Michalska A, Babiarz A, Bodys A, Uliński R, Żochowski M, Scisło P, Kochanowski J, Filipiak KJ, Opolski G (2019) Atrial fibrillation type and renal dysfunction as important predictors of left atrial thrombus. Heart 105(17):1310–1315. https://doi.org/10.1136/heartjnl-2018-314492

    Article  CAS  PubMed  Google Scholar 

  28. Durmaz E, Karpuz MH, Bilgehan K, Ikitimur B, Ozmen E, Ebren C, Polat F, Koca D, Tokdil KO, Kandemirli SG, Atici A, Ongen Z (2020) Left atrial thrombus in patients with atrial fibrillation and under oral anticoagulant therapy; 3-D transesophageal echocardiographic study. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-020-01811-x

    Article  PubMed  Google Scholar 

  29. Oshita T, Mine T, Kishima H, Fukuhara E, Ishihara M (2020) Predictors of movable type left atrial appendage thrombi in patients with atrial fibrillation. Heart Vessels. https://doi.org/10.1007/s00380-020-01589-x

    Article  PubMed  Google Scholar 

  30. Beigel R, Wunderlich NC, Ho SY, Arsanjani R, Siegel RJ (2014) The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc Imaging 7(12):1251–1265. https://doi.org/10.1016/j.jcmg.2014.08.009

    Article  PubMed  Google Scholar 

  31. Beinart R, Heist EK, Newell JB, Holmvang G, Ruskin JN, Mansour M (2011) Left atrial appendage dimensions predict the risk of stroke/TIA in patients with atrial fibrillation. J Cardiovasc Electrophysiol 22(1):10–15. https://doi.org/10.1111/j.1540-8167.2010.01854.x

    Article  PubMed  Google Scholar 

  32. Tabata T, Oki T, Yamada H, Iuchi A, Ito S, Hori T, Kitagawa T, Kato I, Kitahata H, Oshita S (1998) Role of left atrial appendage in left atrial reservoir function as evaluated by left atrial appendage clamping during cardiac surgery. Am J Cardiol 81(3):327–332. https://doi.org/10.1016/s0002-9149(97)00903-x

    Article  CAS  PubMed  Google Scholar 

  33. Lannigan RA, Zaki SA (1966) Ultrastructure of the myocardium of the atrial appendage. Br Heart J 28(6):796–807. https://doi.org/10.1136/hrt.28.6.796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto M, Seo Y, Kawamatsu N, Sato K, Sugano A, Machino-Ohtsuka T, Kawamura R, Nakajima H, Igarashi M, Sekiguchi Y, Ishizu T, Aonuma K (2014) Complex left atrial appendage morphology and left atrial appendage thrombus formation in patients with atrial fibrillation. Circ Cardiovasc Imaging 7(2):337–343. https://doi.org/10.1161/circimaging.113.001317

    Article  PubMed  Google Scholar 

  35. Di Biase L, Santangeli P, Anselmino M, Mohanty P, Salvetti I, Gili S, Horton R, Sanchez JE, Bai R, Mohanty S, Pump A, Cereceda Brantes M, Gallinghouse GJ, Burkhardt JD, Cesarani F, Scaglione M, Natale A, Gaita F (2012) Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol 60(6):531–538. https://doi.org/10.1016/j.jacc.2012.04.032

    Article  PubMed  Google Scholar 

  36. Lee Y, Park HC, Lee Y, Kim SG (2017) Comparison of morphologic features and flow velocity of the left atrial appendage among patients with atrial fibrillation alone, transient ischemic attack, and cardioembolic stroke. Am J Cardiol 119(10):1596–1604. https://doi.org/10.1016/j.amjcard.2017.02.016

    Article  PubMed  Google Scholar 

  37. Chao TF, Liu CJ, Tuan TC, Chen SJ, Wang KL, Lin YJ, Chang SL, Lo LW, Hu YF, Chen TJ, Chiang CE, Chen SA (2016) Comparisons of CHADS2 and CHA2DS2-VASc scores for stroke risk stratification in atrial fibrillation: which scoring system should be used for Asians? Heart Rhythm 13(1):46–53. https://doi.org/10.1016/j.hrthm.2015.08.017

    Article  PubMed  Google Scholar 

  38. Van Staa TP, Setakis E, Di Tanna GL, Lane DA, Lip GY (2011) A comparison of risk stratification schemes for stroke in 79,884 atrial fibrillation patients in general practice. J Thromb Haemost 9(1):39–48. https://doi.org/10.1111/j.1538-7836.2010.04085.x

    Article  PubMed  Google Scholar 

  39. Olesen JB, Torp-Pedersen C, Hansen ML, Lip GY (2012) The value of the CHA2DS2-VASc score for refining stroke risk stratification in patients with atrial fibrillation with a CHADS2 score 0–1: a nationwide cohort study. Thromb Haemost 107(6):1172–1179. https://doi.org/10.1160/th12-03-0175

    Article  CAS  PubMed  Google Scholar 

  40. Echocardiographic predictors of stroke in patients with atrial fibrillation: a prospective study of 1066 patients from 3 clinical trials (1998). Arch Intern Med 158(12), 1316–1320. doi:https://doi.org/10.1001/archinte.158.12.1316

  41. Hijazi Z, Lindbäck J, Alexander JH, Hanna M, Held C, Hylek EM, Lopes RD, Oldgren J, Siegbahn A, Stewart RA, White HD, Granger CB, Wallentin L (2016) The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation. Eur Heart J 37(20):1582–1590. https://doi.org/10.1093/eurheartj/ehw054

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mügge A, Kühn H, Nikutta P, Grote J, Lopez JA, Daniel WG (1994) Assessment of left atrial appendage function by biplane transesophageal echocardiography in patients with nonrheumatic atrial fibrillation: identification of a subgroup of patients at increased embolic risk. J Am Coll Cardiol 23(3):599–607. https://doi.org/10.1016/0735-1097(94)90743-9

    Article  PubMed  Google Scholar 

  43. Fatkin D, Kelly RP, Feneley MP (1994) Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. J Am Coll Cardiol 23(4):961–969. https://doi.org/10.1016/0735-1097(94)90644-0

    Article  CAS  PubMed  Google Scholar 

  44. Chan, KL (1998) Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation: the Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Ann Intern Med 128(8), 639–647. doi:https://doi.org/10.7326/0003-4819-128-8-199804150-00005

    Article  Google Scholar 

  45. Doufekias E, Segal AZ, Kizer JR (2008) Cardiogenic and aortogenic brain embolism. J Am Coll Cardiol 51(11):1049–1059. https://doi.org/10.1016/j.jacc.2007.11.053

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the neurologist in our hospital for assistance in confirming cardiogenic stroke diagnosis.

Funding

This work was supported by the National Key Research and Development Project of China (grant number 2018YFCZ001200).

Author information

Authors and Affiliations

Authors

Contributions

XL collected the data, performed statistical analyses and drafted the manuscript; TC collected data and revised the manuscript; GL and XS participated in collect the data, YC and YC revised the manuscript; YL participated in designing the study and revised the manuscript; JG designed the study, the analyses and revised the manuscript.

Corresponding authors

Correspondence to Yang Li or Jun Guo.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Research Ethics Committee of the Chinese People’s Liberation Army General Hospital. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Given the observational and retrospective nature of this study, no additional informed consent was required, and the privacy of all patients was fully secured.

Financial interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Supplementary file2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Chen, T., Liu, G. et al. Relations between left atrial appendage contrast retention and thromboembolic risk in patients with atrial fibrillation. J Thromb Thrombolysis 53, 191–201 (2022). https://doi.org/10.1007/s11239-021-02490-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-021-02490-8

Keywords

Navigation