Skip to main content
Log in

Evaluation of von Willebrand factor and ADAMTS-13 antigen and activity levels in sickle cell disease patients in Kuwait

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Sickle cell disease (SCD) is a severe form of hemolytic anemia characterized by chronic hemolysis and is associated with increased thrombotic risk. Elevated von Willebrand factor (vWF) levels in SCD have been attributed to increased secretion and impaired processing by its cleaving protease ADAMTS-13. In this study we measured vWF and ADAMTS-13 antigen and activity levels in our SCD patients. Hematological and biochemical parameters for 59 SCD patients (20 children and 39 adults) were analyzed and compared to 59 age- and sex-matched controls. Commercially available ELISA kits were used to measure vWF and ADAMTS-13 antigen and activity levels in patients and controls. Patients had significantly higher levels of vWF (p < 0.006) and ADAMTS-13 activity (p < 0.006) compared to controls. When patients were analyzed according to age and genotype, adult patients (23 SS and 16 Sβ0thal) maintained higher vWF antigen levels (p < 0.001), but with reduced ADAMTS-13 activity to vWF:Ag ratio (p < 0.003) compared to controls. Pediatric patients (8 SS and 12 Sβ0thal) had comparable vWF antigen levels to controls (p > 0.05), but had higher levels of ADAMTS-13 activity (p < 0.011) and ADAMTS-13 activity to vWF:Ag ratio (p < 0.038). Age is an important factor to consider when vWF and ADAMTS-13 proteins are analyzed among our patients. Increased vWF in adult patients may be attributed to increased production and resistance of vWF to proteolysis rather than ADAMTS-13 deficiency. This outcome was not seen in pediatric patients as higher ADAMTS-13 activity maintained vWF antigen at comparable levels to normal controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingram VM (1957) Gene mutation in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Science 180(4581):326–328

    CAS  Google Scholar 

  2. Kual DK, Fabry ME, Nagel L (1989) Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci USA 86(9):3356–3360

    Article  Google Scholar 

  3. Harmening DM (2009) Clinical hematology and fundamentals of hemostasis, 5th edn. Davis Company, Philadelphia

    Google Scholar 

  4. Marouf R, D’souza TM, Adekile AD (2002) Hemoglobin electrophoresis and hemoglobinopathies in Kuwait. Med Princ Pract 11(1):38–41

    Article  CAS  PubMed  Google Scholar 

  5. Adekile AD, Gu LH, Baysal E, Haider MZ, al-Fuzae L, Aboobacker KC, al-Rashied A, Huisman TH (1994) Molecular characterization of alpha-thalassemia determinants, beta-thalassemia alleles, and beta S haplotypes among Kuwaiti Arabs. Acta Haematol 92(4):176–181

    Article  CAS  PubMed  Google Scholar 

  6. Adekile AD, Haider MZ (1996) Morbidity, beta S haplotype and alpha-globin gene patterns among sickle cell anemia patients in Kuwait. Acta Haematol 96(3):150–154

    Article  CAS  PubMed  Google Scholar 

  7. Akar NA, Adekile A (2008) Ten-year review of hospital admissions among children with sickle cell disease in Kuwait. Med Princ Pract 17(5):404–408

    Article  PubMed  Google Scholar 

  8. Pakbaz Z, Wun T (2014) Role of the hemostatic system on sickle cell disease pathophysiology and potential therapeutics. Hematol Oncol Clin North Am 28(2):355–374

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Franceschi L, Cappellini MD, Olivieri O (2011) Thrombosis and sickle cell disease. Semin Thromb Hemost 37(3):226–236

    Article  PubMed  Google Scholar 

  10. Pallister C (1998) Blood: physiology and pathophysiology. Butterworth-Heinemann, Oxford

    Google Scholar 

  11. Kaul DK, Nagel RL, Chen D et al (1993) Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and for vasoocclusion. Blood 81:2429–2438

    CAS  PubMed  Google Scholar 

  12. Frenette PS (2002) Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol 9:101–106

    Article  PubMed  Google Scholar 

  13. Chen J, Hobbs WE, Le J et al (2011) The rate of hemolysis in sickle cell disease correlates with the quantity of active von Willebrand factor in plasma. Blood 117:3680–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kremer Hovinga JA, Studt JD, Lammle B (2003) The von Willebrand factor-cleaving protease (ADAMTS-13) and the diagnosis of thrombotic thrombocytopenic purpura (TTP). Pathophysiol Haemost Thromb 33:417–421

    Article  PubMed  Google Scholar 

  15. Zheng X, Chung D, Takayama TK et al (2001) Structure of von Willebrand factor-cleaving protease (ADAMTS-13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 276:41059–41063

    Article  CAS  PubMed  Google Scholar 

  16. Novelli EM, Kato GJ, Hildesheim ME, Barge S, Meyer MP, Lozier J, Hassett AC, Ragni MV, Isenberg JS, Gladwin MT (2013) Thrombospondin-1 inhibits ADAMTS13 activity in sickle cell disease. Haematologica 98(11):e132–e134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamed AA, Darwish YW, El-Sayed MH (2015) ADAMTS13 levels in young patients with β-thalassemia major: relation to hepatitis C virus infection, liver cirrhosis, and iron overload. Clin Appl Thromb Hemost 21(6):527–532

    Article  CAS  PubMed  Google Scholar 

  18. Schnog JJ, Kremer Hovinga JA, Krieg S et al (2006) ADAMTS13 activity in sickle cell disease. Am J Hematol 81:492–498

    Article  CAS  PubMed  Google Scholar 

  19. Mannucci PM, Canciani MT, Forza I, Lussana F, Lattuada A, Rossi E (2001) Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood 98:2730–2735

    Article  CAS  PubMed  Google Scholar 

  20. Kremer Hovinga JA, Zeerleder S, Kessler P, Romani de Wit T, van Mourik JA, Hack CE, Ten Cate H, Reitsma PH, Wuillemin WA, Lämmle (2007) ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost 5:2284–2290

    Article  CAS  PubMed  Google Scholar 

  21. Al-Awadhi AM, Jadaon MM, Al-Jafar HA, Al-Wazzan HJ (2011) ADAMTS-13 antigen and activity levels in thrombocytopenic disorders including thrombotic thrombocytopenic purpura in Kuwait. Acta Haematol 125(3):160–166

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Z, Han H, Cruz MA, López JA, Dong JF, Guchhait P (2009) Haemoglobin blocks von Willebrand factor proteolysis by ADAMTS-13: a mechanism associated with sickle cell disease. Thromb Haemost 101(6):1070–1077

    CAS  PubMed  Google Scholar 

  23. Chen J, Fu X, Wang Y, Ling M, McMullen B, Kulman J, Chung DW, López JA (2010) Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood 115(3):706–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lippi G, Franchini M, Montagnana M, Guidi GC (2007) Coagulation testing in pediatric patients: the young are not just miniature adults. Semin Thromb Hemost 33(8):816–820

    Article  CAS  PubMed  Google Scholar 

  25. Andrew M, Mitchell L, Vegh P, Ofosu F (1994) Thrombin regulation in children differs from adults in the absence and presence of heparin. Thromb Haemost 72(6):836–842

    CAS  PubMed  Google Scholar 

  26. Flanders MM, Phansalkar AR, Crist RA, Roberts WL, Rodgers GM (2006) Pediatric reference intervals for uncommon bleeding and thrombotic disorders. J Pediatr 149(2):275–277

    Article  PubMed  Google Scholar 

  27. Parmar N, Albisetti M, Berry LR, Chan AK (2006) The fibrinolytic system in newborns and children. Clin Lab 52(3–4):115–24

    CAS  PubMed  Google Scholar 

  28. Colombatti R, De Bon E, Bertomoro A, Casonato A, Pontara E, Omenetto E, Saggiorato G, Steffan A, Damian T, Cella G, Teso S, Manara R, Rampazzo P, Meneghetti G, Basso G, Sartori MT, Sainati L (2013) Coagulation activation in children with sickle cell disease is associated with cerebral small vessel vasculopathy. PLoS One 8(10):e78801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Favaloro EJ, Franchini M, Lippi G (2014) Aging hemostasis: changes to laboratory markers of hemostasis as we age—a narrative review. Semin Thromb Hemost 40(6):621–633

    Article  CAS  PubMed  Google Scholar 

  30. Gupta R, Adekile AD (2004) MRI follow up and natural history of avascular necrosis of the femoral head in Kuwaiti children with sickle cell disease. Am J Ped Hem/Oncol 26(6):351–353

    Article  Google Scholar 

  31. Adekile AD, Yacoub F, Gupta, R, Sinan, T, Al-Bloushi M, Haider MZ, Habib Y, Moosa A (2002) Silent brain infarcts are rare in Kuwaiti children with sickle cell disease and elevated Hb F. Am J Hematol 70(3):228–231

    Article  CAS  PubMed  Google Scholar 

  32. Marouf R, Gupta R, Haider MZ, Adekile AD (2003) Silent brain infarcts in adult Kuwaiti sickle cell disease patients. Am J Hematol 73(4):240–243

    Article  CAS  PubMed  Google Scholar 

  33. Asbeutah A, Adekile AD, Al-Sharida S, Mullah-Ali A, Mustafa NY (2014) Transcranial doppler and brain mri in sickle cell disease children with high hemoglobin F. Pediatr Blood Cancer 61(1):25–28

    Article  CAS  PubMed  Google Scholar 

  34. Adekile AD, Al-Kandari M, Haider M, Marouf R, D’Souza M, Sukumaran J (2007) Hemoglobin F concentration as a function of age in Kuwaiti sickle cell patients. Med Princ Pract 16(4):286–290

    Article  PubMed  Google Scholar 

  35. Orstavik KH, Magnus P, Reisner H, Berg K, Graham JB, Nance W (1985) Factor VIII and factor IX in a twin population: evidence for a major effect of ABO locus on factor VIII level. Am J Hum Genet 37:89–101

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jenkis PV, O’Donnell JS (2006) ABO blood group determines plasma von Willebrand factor levels: a biologic function after all. Transfusion 46:1836–1844

    Article  Google Scholar 

  37. Bongers TN, de Maat MP, van Goor ML, Bhagwanbali V, van Vliet HH, Gómez García EB, Dippel DW, Leebeek FW (2006) High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke 37(11):2672–2677

    Article  CAS  PubMed  Google Scholar 

  38. Chion CK, Doggen CJ, Crawley JT, Lane DA, Rosendaal FR (2007). ADAMTS13 and von Willebrand factor and the risk of myocardial infarction in men. Blood 109(5):1998–2000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported and funded by Kuwait University Research Grant No. NM02/13. Special thanks to Mrs. Liena S. Abdulaziz for performing ELISA work. The authors also thank Rasha Abdullah, Hadeel Al-Muzaini and Nada Mustafa for their help in sample and data collection. The technical assistance of Mohammad Ezzat, Matra Salem and Mays Abdulhadi is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Al-Awadhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Awadhi, A., Adekile, A. & Marouf, R. Evaluation of von Willebrand factor and ADAMTS-13 antigen and activity levels in sickle cell disease patients in Kuwait. J Thromb Thrombolysis 43, 117–123 (2017). https://doi.org/10.1007/s11239-016-1418-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-016-1418-4

Keywords

Navigation