Skip to main content

Advertisement

Log in

Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Oxidized phospholipids (OxPL) are abundant in atherosclerotic plaques. They are also bound to circulating plasminogen after myocardial infarction (MI), and their binding to plasminogen may accentuate fibrinolysis. We sought to assess whether circulating levels of plasminogen and OxPL bound to plasminogen (OxPL-PLG) increase following acute MI and whether this increase differs between atherothrombotic (Type 1) and non-atherothrombotic (Type 2) MI. We measured circulating levels of plasminogen and OxPL-PLG at 0, 6, 24, 48 h, and >3 months (stable state) following acute MI and following an angiogram for stable coronary artery disease (CAD). Forty-nine subjects met the criteria for acute MI, of whom 34 had clearly defined atherothrombotic (n = 22) or non-atherothrombotic (n = 12) MI; 15 patients met the criteria for stable CAD. Mean baseline levels of plasminogen and OxPL-PLG were lower in the acute MI group than in the stable CAD group (9.75 vs 20.2, p < 0.0001 for plasminogen and 165.5 vs 275.1, p = 0.0002 for OxPL-PLG) and did not change over time or between time points, including the 3-month follow-up. Mean baseline levels of plasminogen and OxPL-PLG were also lower in atherothrombotic (Type 1) than in non-atherothrombotic (Type 2) MI subjects (8.65 vs 12.1, p < 0.03 for plasminogen and 164.5 vs 245.7, p = 0.02 for OxPL-PLG), and this relationship did not change over time or between time points. Plasminogen and OxPL-PLG were lower in patients presenting with an acute MI than in those with stable CAD and also in those with atherothrombotic MI (Type 1) vs. those with non-atherothrombotic MI (Type 2). These findings persisted at a median follow-up of 3 months post-MI. The association of plasminogen and OxPL-PLG with acute MI, particularly atherothrombotic MI (Type 1), could reflect a reduced fibrinolytic capacity, associated with an increased risk of atherothrombotic events differentiating stable CAD from unstable CAD and atherothrombotic MI (Type 1) from non-atherothrombotic MI (Type 2). Additional study with a larger sample size is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

ACS:

Acute coronary syndrome

ApoB:

Apolipoprotein B

BP:

Blood pressure

CABG:

Coronary artery bypass graft

CAD:

Coronary artery disease

CEA:

Carotid endarterectomy

CVD:

Cardiovascular disease

EDTA:

Ethylenediamine tetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

ECG:

Electrocardiogram

LBBB:

Left bundle branch block

MI:

Myocardial infarction

MPG:

Myocardial perfusion grade

OxPL:

Oxidized phospholipids

OxPL-PLG:

Oxidized phospholipids bound to plasminogen

PAI-1:

Plasminogen activator inhibitor-1

PCI:

Percutaneous coronary intervention

PLG:

Plasminogen

STEMI:

ST-segment elevation myocardial infarction

TIA:

Transient ischemic attack

TIMl:

Thrombolysis in myocardial infarction

tPA:

Tissue plasminogen activator

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2012) Executive summary: heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125(1):188–197. doi:10.1161/CIR.0b013e3182456d46

    Article  PubMed  Google Scholar 

  2. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Joint ESCAAHAWHFTFfUDoMI, Authors/Task Force Members C, Thygesen K, Alpert JS, White HD, Biomarker S, Jaffe AS, Katus HA, Apple FS, Lindahl B, Morrow DA, Subcommittee ECG, Chaitman BR, Clemmensen PM, Johanson P, Hod H, Imaging S, Underwood R, Bax JJ, Bonow JJ, Pinto F, Gibbons RJ, Classification S, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Intervention S, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasche P, Ravkilde J, Trials Registries S, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Trials Registries S, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Trials Registries S, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Trials Registries S, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S, Guidelines ESCCfP, Bax JJ, Baumgartner H, Ceconi C, Dean V, Deaton C, Fagard R, Funck-Brentano C, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Vahanian A, Windecker S, Document R, Morais J, Aguiar C, Almahmeed W, Arnar DO, Barili F, Bloch KD, Bolger AF, Botker HE, Bozkurt B, Bugiardini R, Cannon C, de Lemos J, Eberli FR, Escobar E, Hlatky M, James S, Kern KB, Moliterno DJ, Mueller C, Neskovic AN, Pieske BM, Schulman SP, Storey RF, Taubert KA, Vranckx P, Wagner DR (2012) Third universal definition of myocardial infarction. J Am College Cardiol 60(16):1581–1598. doi:10.1016/j.jacc.2012.08.001

    Article  Google Scholar 

  3. Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, Bickel C, Baldus S, Warnholtz A, Frohlich M, Sinning CR, Eleftheriadis MS, Wild PS, Schnabel RB, Lubos E, Jachmann N, Genth-Zotz S, Post F, Nicaud V, Tiret L, Lackner KJ, Munzel TF, Blankenberg S (2009) Sensitive troponin I assay in early diagnosis of acute myocardial infarction. New Engl J Med 361(9):868–877. doi:10.1056/NEJMoa0903515

    Article  CAS  PubMed  Google Scholar 

  4. Newby LK, Jesse RL, Babb JD, Christenson RH, De Fer TM, Diamond GA, Fesmire FM, Geraci SA, Gersh BJ, Larsen GC, Kaul S, McKay CR, Philippides GJ, Weintraub WS (2012) ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on Clinical Expert Consensus Documents. J Am Coll Cardiol 60(23):2427–2463. doi:10.1016/j.jacc.2012.08.969

    Article  PubMed  Google Scholar 

  5. Choi SH, Yin H, Ravandi A, Armando A, Dumlao D, Kim J, Almazan F, Taylor AM, McNamara CA, Tsimikas S, Dennis EA, Witztum JL, Miller YI (2013) Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages. PLoS One 8(12):e83145. doi:10.1371/journal.pone.0083145

    Article  PubMed  PubMed Central  Google Scholar 

  6. Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T (1994) A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem 269(21):15274–15279

    CAS  PubMed  Google Scholar 

  7. Ravandi A, Leibundgut G, Hung MY, Patel M, Hutchins PM, Murphy RC, Prasad A, Mahmud E, Miller YI, Dennis EA, Witztum JL, Tsimikas S (2014) Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol 63(19):1961–1971. doi:10.1016/j.jacc.2014.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsimikas S, Duff GW, Berger PB, Rogus J, Huttner K, Clopton P, Brilakis E, Kornman KS, Witztum JL (2014) Pro-inflammatory interleukin-1 genotypes potentiate the risk of coronary artery disease and cardiovascular events mediated by oxidized phospholipids and lipoprotein(a). J Am Coll Cardiol 63(17):1724–1734. doi:10.1016/j.jacc.2013.12.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Dijk RA, Kolodgie F, Ravandi A, Leibundgut G, Hu PP, Prasad A, Mahmud E, Dennis E, Curtiss LK, Witztum JL, Wasserman BA, Otsuka F, Virmani R, Tsimikas S (2012) Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res 53(12):2773–2790. doi:10.1194/jlr.P030890

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tsimikas S, Bergmark C, Beyer RW, Patel R, Pattison J, Miller E, Juliano J, Witztum JL (2003) Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol 41(3):360–370

    Article  CAS  PubMed  Google Scholar 

  11. Tsimikas S, Lau HK, Han KR, Shortal B, Miller ER, Segev A, Curtiss LK, Witztum JL, Strauss BH (2004) Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation 109(25):3164–3170. doi:10.1161/01.CIR.0000130844.01174.55

    Article  CAS  PubMed  Google Scholar 

  12. Edelstein C, Pfaffinger D, Yang M, Hill JS (1801) Scanu AM (2010) Naturally occurring human plasminogen, like genetically related apolipoprotein(a), contains oxidized phosphatidylcholine adducts. Biochim Biophys Acta 7:738–745. doi:10.1016/j.bbalip.2010.03.009

    Google Scholar 

  13. Leibundgut G, Arai K, Orsoni A, Yin H, Scipione C, Miller ER, Koschinsky ML, Chapman MJ, Witztum JL, Tsimikas S (2012) Oxidized phospholipids are present on plasminogen, affect fibrinolysis, and increase following acute myocardial infarction. J Am Coll Cardiol 59(16):1426–1437. doi:10.1016/j.jacc.2011.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsimikas S, Kiechl S, Willeit J, Mayr M, Miller ER, Kronenberg F, Xu Q, Bergmark C, Weger S, Oberhollenzer F, Witztum JL (2006) Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J Am Coll Cardiol 47(11):2219–2228. doi:10.1016/j.jacc.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  15. Bertoia ML, Pai JK, Lee JH, Taleb A, Joosten MM, Mittleman MA, Yang X, Witztum JL, Rimm EB, Tsimikas S, Mukamal KJ (2013) Oxidation-specific biomarkers and risk of peripheral artery disease. J Am Coll Cardiol 61(21):2169–2179. doi:10.1016/j.jacc.2013.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fefer P, Tsimikas S, Segev A, Sparkes J, Otsuka F, Kolodgie F, Virmani R, Juliano J, Charron T, Strauss BH (2012) The role of oxidized phospholipids, lipoprotein (a) and biomarkers of oxidized lipoproteins in chronically occluded coronary arteries in sudden cardiac death and following successful percutaneous revascularization. Cardiovasc Revasc Med 13(1):11–19. doi:10.1016/j.carrev.2011.08.001

    Article  PubMed  Google Scholar 

  17. Tsimikas S, Witztum JL, Miller ER, Sasiela WJ, Szarek M, Olsson AG, Schwartz GG, Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering Study I (2004) High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation 110(11):1406–1412. doi:10.1161/01.CIR.0000141728.23033.B5

    Article  CAS  PubMed  Google Scholar 

  18. Ambrose JA, Almeida OD, Sharma SK, Dangas G, Ratner DE (1997) Angiographic evolution of intracoronary thrombus and dissection following percutaneous transluminal coronary angioplasty (the Thrombolysis and Angioplasty in Unstable Angina [TAUSA] trial). Am J Cardiol 79(5):559–563

    Article  CAS  PubMed  Google Scholar 

  19. Ambrose JA, Almeida OD, Sharma SK, Torre SR, Marmur JD, Israel DH, Ratner DE, Weiss MB, Hjemdahl-Monsen CE, Myler RK et al (1994) Adjunctive thrombolytic therapy during angioplasty for ischemic rest angina. Results of the TAUSA Trial. TAUSA Investigators. Thrombolysis and Angioplasty in Unstable Angina trial. Circulation 90(1):69–77

    Article  CAS  PubMed  Google Scholar 

  20. Ambrose JA, Israel DH (1991) Angiography in unstable angina. Am J Cardiol 68(7):78B–84B

    Article  CAS  PubMed  Google Scholar 

  21. Capone G, Wolf NM, Meyer B, Meister SG (1985) Frequency of intracoronary filling defects by angiography in angina pectoris at rest. Am J Cardiol 56(7):403–406

    Article  CAS  PubMed  Google Scholar 

  22. Gibson CM, Cannon CP, Murphy SA, Marble SJ, Barron HV, Braunwald E, Group TS (2002) Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation 105(16):1909–1913

    Article  PubMed  Google Scholar 

  23. Gibson CM, Cannon CP, Murphy SA, Ryan KA, Mesley R, Marble SJ, McCabe CH, Van De Werf F, Braunwald E (2000) Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation 101(2):125–130

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW (2000) Multiple complex coronary plaques in patients with acute myocardial infarction. New Engl J Med 343(13):915–922. doi:10.1056/NEJM200009283431303

    Article  CAS  PubMed  Google Scholar 

  25. Zack PM, Ischinger T, Aker UT, Dincer B, Kennedy HL (1984) The occurrence of angiographically detected intracoronary thrombus in patients with unstable angina pectoris. Am Heart J 108(6):1408–1412

    Article  CAS  PubMed  Google Scholar 

  26. Kramer MC, Rittersma SZ, de Winter RJ, Ladich ER, Fowler DR, Liang YH, Kutys R, Carter-Monroe N, Kolodgie FD, van der Wal AC, Virmani R (2010) Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol 55(2):122–132. doi:10.1016/j.jacc.2009.09.007

    Article  PubMed  Google Scholar 

  27. Kramer MC, van der Wal AC, Koch KT, Ploegmakers JP, van der Schaaf RJ, Henriques JP, Baan J Jr, Rittersma SZ, Vis MM, Piek JJ, Tijssen JG, de Winter RJ (2008) Presence of older thrombus is an independent predictor of long-term mortality in patients with ST-elevation myocardial infarction treated with thrombus aspiration during primary percutaneous coronary intervention. Circulation 118(18):1810–1816

    Article  PubMed  Google Scholar 

  28. DeFilippis AP, Oloyede OS, Andrikopoulou E, Saenger AK, Palachuvattil JM, Fasoro YA, Guallar E, Blumenthal RS, Kickler TS, Jaffe AS, Gerstenblith G, Schulman SP, Rade JJ (2013) Thromboxane A(2) generation, in the absence of platelet COX-1 activity, in patients with and without atherothrombotic myocardial infarction. Circul J 77(11):2786–2792

    Article  CAS  Google Scholar 

  29. Ambrose JA, Loures-Vale A, Javed U, Buhari CF, Aftab W (2012) Angiographic correlates in type 1 and 2 MI by the universal definition. JACC Cardiovasc Imaging 5(4):463–464. doi:10.1016/j.jcmg.2011.12.016

    Article  PubMed  Google Scholar 

  30. Javed U, Aftab W, Ambrose JA, Wessel RJ, Mouanoutoua M, Huang G, Barua RS, Weilert M, Sy F, Thatai D (2009) Frequency of elevated troponin I and diagnosis of acute myocardial infarction. Am J Cardiol 104(1):9–13. doi:10.1016/j.amjcard.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  31. Melberg T, Burman R, Dickstein K (2010) The impact of the 2007 ESC-ACC-AHA-WHF Universal definition on the incidence and classification of acute myocardial infarction: a retrospective cohort study. Int J Cardiol 139(3):228–233. doi:10.1016/j.ijcard.2008.10.021

    Article  PubMed  Google Scholar 

  32. Morrow DA, Wiviott SD, White HD, Nicolau JC, Bramucci E, Murphy SA, Bonaca MP, Ruff CT, Scirica BM, McCabe CH, Antman EM, Braunwald E (2009) Effect of the novel thienopyridine prasugrel compared with clopidogrel on spontaneous and procedural myocardial infarction in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis in Myocardial Infarction 38: an application of the classification system from the universal definition of myocardial infarction. Circulation 119(21):2758–2764. doi:10.1161/CIRCULATIONAHA.108.833665

    Article  CAS  PubMed  Google Scholar 

  33. Saaby L, Poulsen TS, Diederichsen AC, Hosbond S, Larsen TB, Schmidt H, Gerke O, Hallas J, Thygesen K, Mickley H (2014) Mortality rate in type 2 myocardial infarction: observations from an unselected hospital cohort. Am J Med 127(4):295–302. doi:10.1016/j.amjmed.2013.12.020

    Article  PubMed  Google Scholar 

  34. Saaby L, Poulsen TS, Hosbond S, Larsen TB, Pyndt Diederichsen AC, Hallas J, Thygesen K, Mickley H (2013) Classification of myocardial infarction: frequency and features of type 2 myocardial infarction. Am J Med 126(9):789–797. doi:10.1016/j.amjmed.2013.02.029

    Article  PubMed  Google Scholar 

  35. Stein GY, Herscovici G, Korenfeld R, Matetzky S, Gottlieb S, Alon D, Gevrielov-Yusim N, Iakobishvili Z, Fuchs S (2014) Type-II myocardial infarction–patient characteristics, management and outcomes. PLoS One 9(1):e84285. doi:10.1371/journal.pone.0084285

    Article  PubMed  PubMed Central  Google Scholar 

  36. Muller KE, Lavange LM, Ramey SL, Ramey CT (1992) Power calculations for general linear multivariate models including repeated measures applications. J Am Stat Assoc 87(420):1209–1226. doi:10.1080/01621459.1992.10476281

    Article  PubMed  PubMed Central  Google Scholar 

  37. Konieczynska M, Fil K, Bazanek M, Undas A (2014) Prolonged duration of type 2 diabetes is associated with increased thrombin generation, prothrombotic fibrin clot phenotype and impaired fibrinolysis. Thromb Haemost 111(4):685–693. doi:10.1160/TH13-07-0566

    Article  CAS  PubMed  Google Scholar 

  38. Allen RA, Kluft C, Brommer EJ (1985) Effect of chronic smoking on fibrinolysis. Arteriosclerosis 5(5):443–450

    Article  CAS  PubMed  Google Scholar 

  39. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14):1664–1672. doi:10.1161/01.CIR.0000087480.94275.97

    Article  PubMed  Google Scholar 

  40. Hoffmeister HM, Jur M, Ruf-Lehmann M, Helber U, Heller W, Seipel L (1998) Endothelial tissue-type plasminogen activator release in coronary heart disease: Transient reduction in endothelial fibrinolytic reserve in patients with unstable angina pectoris or acute myocardial infarction. J Am Coll Cardiol 31(3):547–551

    Article  CAS  PubMed  Google Scholar 

  41. Meltzer ME, Doggen CJ, de Groot PG, Rosendaal FR, Lisman T (2010) Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men. Blood 116(4):529–536. doi:10.1182/blood-2010-01-263103

    Article  CAS  PubMed  Google Scholar 

  42. Folsom AR, Aleksic N, Park E, Salomaa V, Juneja H, Wu KK (2001) Prospective study of fibrinolytic factors and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 21(4):611–617

    Article  CAS  PubMed  Google Scholar 

  43. Hoffmeister A, Rothenbacher D, Khuseyinova N, Brenner H, Koenig W (2002) Plasminogen levels and risk of coronary artery disease. Am J Cardiol 90(10):1168–1170

    Article  CAS  PubMed  Google Scholar 

  44. Ridker PM, Vaughan DE, Stampfer MJ, Manson JE, Hennekens CH (1993) Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 341(8854):1165–1168

    Article  CAS  PubMed  Google Scholar 

  45. Salomaa V, Rasi V, Kulathinal S, Vahtera E, Jauhiainen M, Ehnholm C, Pekkanen J (2002) Hemostatic factors as predictors of coronary events and total mortality: The FINRISK ‘92 Hemostasis Study. Arterioscler Thromb Vasc Biol 22(2):353–358

    Article  CAS  PubMed  Google Scholar 

  46. Yamagishi K, Aleksic N, Hannan PJ, Folsom AR, Inverstigators AS (2010) Coagulation factors II, V, IX, X, XI, and XII, plasminogen, and alpha-2 antiplasmin and risk of coronary heart disease. J Atheroscler Thromb 17(4):402–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffmeister HM, Jur M, Wendel HP, Heller W, Seipel L (1995) Alterations of coagulation and fibrinolytic and kallikrein-kinin systems in the acute and postacute phases in patients with unstable angina pectoris. Circulation 91(10):2520–2527

    Article  CAS  PubMed  Google Scholar 

  48. Jenkins GR, Seiffert D, Parmer RJ, Miles LA (1997) Regulation of plasminogen gene expression by interleukin-6. Blood 89(7):2394–2403

    CAS  PubMed  Google Scholar 

  49. Kida M, Wakabayashi S, Ichinose A (1997) Expression and induction by IL-6 of the normal and variant genes for human plasminogen. Biochem Biophys Res Commun 230(1):129–132. doi:10.1006/bbrc.1996.5909

    Article  CAS  PubMed  Google Scholar 

  50. Kostka T, Para J, Kostka B (2009) Cardiovascular diseases (CVD) risk factors, physical activity (PA) and plasma plasminogen (Plg) in a random sample of community-dwelling elderly. Arch Gerontol Geriatr 48(3):300–305. doi:10.1016/j.archger.2008.02.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all of the subjects who generously consented to participate in this study. We also appreciate the University of Louisville Diabetes and Obesity Center, the University of Louisville and the KentuckyOne Jewish Hospitals, CVPath Institute, Inc., Gaithersburg, Maryland, and the Johns Hopkins Quantitative Angiographic Core Laboratory. This work was supported in part by a grant from the American Heart Association (11CRP7300003) and the National Institute of General Medical Sciences (GM103492). Dr. Rai was supported by Wendell Cherry Chair in Clinical Trial Research and generous support from Dr. DM Miller, Director James Graham Brown Cancer Center. We thank Dr. Deborah MClellan for editorial assistance.

Disclosures

Sample measurements were made in the laboratory of Dr. Sotirios Tsimikas, University of California, San Diego, La Jolla, California. Coronary aspiration material was evaluated at CVPath Institute, Inc., Gaithersburg, Maryland. Coronary angiography was evaluated at the Johns Hopkins Quantitative Angiographic Core Laboratory, Baltimore, Maryland. Dr. Tsimikas is named as co-inventor and receives royalties from patents owned by the University of California, San Diego, on oxidation-specific antibodies. No author has any relationships with industry pertinent to this work.

Grant support

American Heart Association (11CRP7300003) and National Institute of General Medical Sciences (GM103492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. DeFilippis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeFilippis, A.P., Chernyavskiy, I., Amraotkar, A.R. et al. Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction. J Thromb Thrombolysis 42, 61–76 (2016). https://doi.org/10.1007/s11239-015-1292-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-015-1292-5

Keywords

Navigation