Skip to main content
Log in

Combination of rosuvastatin and probucol inhibits MMP-9 expression via upregulation of miR-497 in cultured HUVECs and apoE knockout mice

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

This study deciphered the molecular mechanisms of the inhibition of MMP-9 expression using rosuvastatin in cultured human umbilical vein endothelial cells (HUVECs) and apoE knockout mice and whether the combination of rosuvastatin and probucol enhanced this effect. The role that microRNA (miR)-497 plays in the regulation of MMP-9 expression was evaluated in cultured HUVECs and apoE knockout mice using quantitative real-time reverse transcription polymerase chain reaction and Western blotting. First, TNFα significantly increased mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling and MMP-9 levels, and the transfection of miR-497 prevented this increase. The converse results were obtained after miR-497 suppression. Second, the administration of rosuvastatin or the combination of two drugs decreased MAPK/ERK signaling and MMP-9 levels, and the suppression of miR-497 upregulated these levels. Third, the administration of rosuvastatin or the combination of two drugs increased miR-497 expression levels in the aortas of apoE knockout mice, but the levels of serum lipids and plaque areas decreased, which improved plaque components and decreased the MAPK/ERK signaling and MMP-9 levels. Finally, the combination of the two drugs was more effective than the use of rosuvastatin alone. Rosuvastatin inhibits MMP-9 expression by upregulating miR-497 in HUVECs and apoE knockout mice, and the combination of rosuvastatin and probucol enhances this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3(11):e442

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  3. Montecucco F, Lenglet S, Gayet-Ageron A, Bertolotto M, Pelli G, Palombo D, Pane B, Spinella G, Steffens S, Raffaghello L, Pistoia V, Ottonello L, Pende A, Dallegri F, Mach F (2010) Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 41(7):1394–1404

    Article  PubMed  Google Scholar 

  4. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC (2009) Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 101(6):1006–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R, Danesh J (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 375(9709):132–140

    Article  Google Scholar 

  6. Canouï-Poitrine F, Luc G, Mallat Z, Machez E, Bingham A, Ferrieres J, Ruidavets JB, Montaye M, Yarnell J, Haas B, Arveiler D, Morange P, Kee F, Evans A, Amouyel P, Ducimetiere P, Empana JP, PRIME Study Group (2011) Systemic chemokine levels, coronary heart disease, and ischemic stroke events: the PRIME study. Neurology. 77(12):1165–1673

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sukhova GK, Schönbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, Libby P (1999) Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99(19):2503–2509

    Article  CAS  PubMed  Google Scholar 

  8. Johnson JL, Devel L, Czarny B, George SJ, Jackson CL, Rogakos V, Beau F, Yiotakis A, Newby AC, Dive V (2011) A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 31(3):528–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hobeika MJ, Thompson RW, Muhs BE, Brooks PC, Gagne PJ (2007) Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg 45(4):849–857

    Article  PubMed  Google Scholar 

  10. Brown DL, Hibbs MS, Kearney M, Isner JM (1997) Differential expression of 92-kDa gelatinase in primary atherosclerotic versus restenotic coronary lesions. Am J Cardiol 79(7):878–882

    Article  CAS  PubMed  Google Scholar 

  11. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Montecucco F, Burger F, Pelli G, Poku NK, Berlier C, Steffens S, Mach F (2009) Statins inhibit C-reactive protein-induced chemokine secretion, ICAM-1 upregulation and chemotaxis in adherent human monocytes. Rheumatol (Oxf) 48(3):233–242

    Article  CAS  Google Scholar 

  13. Kim J, Min JK, Park JA, Doh HJ, Choi YS, Rho J, Kim YM, Kwon YG (2010) Receptor activator of nuclear factor kappaB ligand is a novel inducer of tissue factor in macrophages. Circ Res 107(7):871–876

    Article  CAS  PubMed  Google Scholar 

  14. Quercioli A, Mach F, Bertolotto M, Lenglet S, Vuilleumier N, Galan K, Pagano S, Braunersreuther V, Pelli G, Pistoia V, Bianchi G, Cittadini G, Viviani GL, Pende A, Roux-Lombard P, Thomas A, Staub C, Ratib O, Dallegri F, Schindler TH, Montecucco F (2012) Receptor activator of NF- κB ligand (RANKL) increases the release of neutrophil products associated with coronary vulnerability. Thromb Haemost 107(1):124–139

    Article  CAS  PubMed  Google Scholar 

  15. Montecucco F, Vuilleumier N, Pagano S, Lenglet S, Bertolotto M, Braunersreuther V, Pelli G, Kovari E, Pane B, Spinella G, Pende A, Palombo D, Dallegri F, Mach F, Roux-Lombard P (2011) Anti-apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. Eur Heart J 32(4):412–421

    Article  CAS  PubMed  Google Scholar 

  16. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155

    Article  CAS  PubMed  Google Scholar 

  17. Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270(25):14843–14846

    Article  CAS  PubMed  Google Scholar 

  18. Cho A, Graves J, Reidy MA (2000) Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20(12):2527–2532

    Article  CAS  PubMed  Google Scholar 

  19. Khan KM, Falcone DJ, Kraemer R (2002) Nerve growth factor activation of Erk-1 and Erk-2 induces matrix metalloproteinase-9 expression in vascular smooth muscle cells. J Biol Chem 277(3):2353–2359

    Article  CAS  PubMed  Google Scholar 

  20. Ohshima S, Fujimoto S, Petrov A, Nakagami H, Haider N, Zhou J, Tahara N, Osako MK, Fujimoto A, Zhu J, Murohara T, Edwards DS, Narula N, Wong ND, Chandrashekhar Y, Morishita R, Narula J (2010) Effect of an antimicrobial agent on atherosclerotic plaques: assessment of metalloproteinase activity by molecular imaging. J Am Coll Cardiol 55(12):1240–1249

    Article  PubMed  Google Scholar 

  21. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R, Cholesterol Treatment Trialists’ (CTT) Collaborators (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493):1267–1278

    Article  CAS  PubMed  Google Scholar 

  22. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 376(9753):1670–1681

    Article  Google Scholar 

  23. Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 84(16):5928–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daugherty A, Zweifel BS, Schonfeld G (1989) Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Br J Pharmacol 98(2):612–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niimi M, Keyamura Y, Nozako M, Koyama T, Kohashi M, Yasufuku R, Yoshikawa T, Fan J (2013) Probucol inhibits the initiation of atherosclerosis in cholesterol-fed rabbits. Lipids Health Dis. 4(12):166

    Article  Google Scholar 

  26. Kasai T, Miyauchi K, Kubota N, Kajimoto K, Amano A, Daida H (2012) Probucol therapy improves long-term (>10-year) survival after complete revascularization: a propensity analysis. Atherosclerosis. 220(2):463–469

    Article  CAS  PubMed  Google Scholar 

  27. Kesäniemi YA, Grundy SM (1984) Influence of probucol on cholesterol and lipoprotein metabolism in man. J Lipid Res 25(8):780–790

    PubMed  Google Scholar 

  28. Siveski-Iliskovic N, Kaul N, Singal PK (1994) Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation 89(6):2829–2835

    Article  CAS  PubMed  Google Scholar 

  29. Bräsen JH, Koenig K, Bach H, Kontush A, Heinle H, Witting PK, Ylä-Herttuala S, Stocker R, Beisiegel U (2002) Comparison of the effects of alpha-tocopherol, ubiquinone-10 and probucol at therapeutic doses on atherosclerosis in WHHL rabbits. Atherosclerosis. 163(2):249–259

    Article  PubMed  Google Scholar 

  30. Fruebis J, Gonzalez V, Silvestre M, Palinski W (1997) Effect of probucol treatment on gene expression of VCAM-1, MCP-1, and M-CSF in the aortic wall of LDL receptor-deficient rabbits during early atherogenesis. Arterioscler Thromb Vasc Biol 17(7):1289–1302

    Article  CAS  PubMed  Google Scholar 

  31. Wu TC, Chen YH, Leu HB, Chen YL, Lin FY, Lin SJ, Chen JW (2007) Carvedilol, a pharmacological antioxidant, inhibits neointimal matrix metalloproteinase-2 and -9 in experimental atherosclerosis. Free Radic Biol Med 43(11):1508–1522

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Liang J, Niimi M, Bilal Waqar A, Kang D, Koike T, Wang Y, Shiomi M, Fan J (2014) Probucol suppresses macrophage infiltration and MMP expression in atherosclerotic plaques of WHHL rabbits. J Atheroscler Thromb 21(7):648–658

    Article  CAS  PubMed  Google Scholar 

  33. Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19(1):1–15

    Article  CAS  PubMed  Google Scholar 

  34. Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542

    Article  CAS  PubMed  Google Scholar 

  35. Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, Malatesta S, Bucci M, Mammarella C, Santovito D, de Lutiis F, Marchetti A, Mezzetti A, Buttitta F (2011) A unique microRNA signature associated with plaque instability in humans. Stroke 42(9):2556–2563

    Article  PubMed  Google Scholar 

  36. Raitoharju E, Lyytikäinen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kähönen M, Karhunen PJ, Laaksonen R, Lehtimäki T (2011) miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219(1):211–217

    Article  CAS  PubMed  Google Scholar 

  37. Zheng D, Radziszewska A, Woo P (2012) MicroRNA 497 modulates interleukin 1 signalling via the MAPK/ERK pathway. FEBS Lett 586(23):4165–4172

    Article  CAS  PubMed  Google Scholar 

  38. Rizzo M, Berneis K, Spinas GA, Rini GB, Kapur NK (2009) Quantitative and qualitative effects of rosuvastatin on LDL-cholesterol: what is the clinical significance? Int J Clin Pract 63(3):478–485

    Article  CAS  PubMed  Google Scholar 

  39. Saito Y, Yamada N, Shirai K, Sasaki J, Ebihara Y, Yanase T, Fox JC (2007) Effect of rosuvastatin 5-20 mg on triglycerides and other lipid parameters in Japanese patients with hypertriglyceridemia. Atherosclerosis 194(2):505–511

    Article  CAS  PubMed  Google Scholar 

  40. Caslake MJ, Stewart G, Day SP, Daly E, McTaggart F, Chapman MJ, Durrington P, Laggner P, Mackness M, Pears J, Packard CJ (2003) Phenotype-dependent and -independent actions of rosuvastatin on atherogenic lipoprotein subfractions in hyperlipidaemia. Atherosclerosis 171(2):245–253

    Article  CAS  PubMed  Google Scholar 

  41. McTaggart F, Jones P (2008) Effects of statins on high-density lipoproteins: a potential contribution to cardiovascular benefit. Cardiovasc Drugs Ther 22(4):321–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Athyros VG, Kakafika AI, Tziomalos K, Karagiannis A, Mikhailidis DP (2009) Pleiotropic effects of statins–clinical evidence. Curr Pharm Des 15(5):479–489

    Article  CAS  PubMed  Google Scholar 

  43. Blum A, Shamburek R (2009) The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 203(2):325–330

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Li D, Schaefer RF, Mehta JL (2004) Inhibitory effect of candesartan and rosuvastatin on CD40 and MMPs expression in apo-E knockout mice: novel insights into the role of RAS and dyslipidemia in atherogenesis. J Cardiovasc Pharmacol 44(4):446–452

    Article  CAS  PubMed  Google Scholar 

  45. Satoh M, Tabuchi T, Minami Y, Takahashi Y, Itoh T, Nakamura M (2012) Expression of let-7i is associated with Toll-like receptor 4 signal in coronary artery disease: effect of statins on let-7i and Toll-like receptor 4 signal. Immunobiology 217(5):533–539

    Article  CAS  PubMed  Google Scholar 

  46. Wu XD, Zeng K, Liu WL, Gao YG, Gong CS, Zhang CX, Chen YQ (2014) Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. Int J Sports Med 35(4):344–350

    PubMed  Google Scholar 

  47. Liu RR, Li J, Gong JY, Kuang F, Liu JY, Zhang YS, Ma QL, Song CJ, Truax AD, Gao F, Yang K, Jin BQ, Chen LH (2015) MicroRNA-141 regulates the expression level of ICAM-1 on endothelium to decrease myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol:ajpheart-00290. [Epub ahead of print]

  48. Li X, Zeng Z, Li Q, Xu Q, Xie J, Hao H, Luo G, Liao W, Bin J, Huang X, Liao Y (2015) Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget 6(22):18829–18844

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li Z, Lu J, Luo Y, Li S, Chen M (2014) High association between human circulating microRNA-497 and acute myocardial infarction. Sci World J 2014:931845

    Google Scholar 

  50. Cai D, Jia Y, Lu J, Yuan M, Sui S, Song H, Zhao R (2014) Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets. Br J Nutr 112(9):1459–1468

    Article  CAS  PubMed  Google Scholar 

  51. Bräsen JH, Harsch M, Niendorf A (1998) Survival and cardiovascular pathology of heterozygous Watanabe heritable hyperlipidaemic rabbits treated with pravastatin and probucol on a low-cholesterol (0.03%)-enriched diet. Virchows Arch 432(6):557–562

    Article  PubMed  Google Scholar 

  52. Ge CJ, Lü SZ, Feng LX, Huo Y, Song XT, Chen X, Meng K, Yuan F (2012) Combined effect of atorvastatin and probucol on plasma cystatin C levels and severity of coronary lesion in patients with borderline coronary lesion. Chin Med J (Engl). 125(14):2472–2476

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-ping Li.

Ethics declarations

Conflicts of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yy., Li, H., Wang, Xh. et al. Combination of rosuvastatin and probucol inhibits MMP-9 expression via upregulation of miR-497 in cultured HUVECs and apoE knockout mice. J Thromb Thrombolysis 41, 592–605 (2016). https://doi.org/10.1007/s11239-015-1291-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-015-1291-6

Keywords

Navigation