Skip to main content
Log in

Fructose induces prothrombotic phenotype in human endothelial cells

A new role for “added sugar” in cardio-metabolic risk

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Intake of large amounts of added sweeteners has been associated with the pathogenesis of cardiometabolic risk. Several studies have shown that fructose increases the cardiovascular risk by modulating endothelial dysfunction and promoting atherosclerosis. Recently, a potential role for fructose in cardiovascular thrombosis has been suggested but with controversial results. Tissue factor (TF) plays a pivotal role in the pathophysiology of cardiovascular thrombosis by triggering the formation of intracoronary thrombi following endothelial injury. This study investigates the effects of fructose, in a concentration range usually observed in the plasma of patients with increased cardiovascular risk, on TF in human umbilical endothelial cells (HUVECs). Cells were stimulated with increasing concentrations of fructose (0.25, 1 and 2.5 mM) and then processed to evaluate TF-mRNA levels by real-time PCR as well as TF expression/activity by FACS analysis and procoagulant activity. Finally, a potential molecular pathway involved in modulating this phenomenon was investigated. We demonstrate that fructose induces transcription of mRNA for TF. In addition, we show that this monosaccharide promotes surface expression of TF that is functionally active. Fructose effects on TF appear modulated by the oxygen free radicals through activation of the transcription factor NF-κB since superoxide dismutase and NF-κB inhibitors suppressed TF expression. Data of the present study, although in vitro, indicate that fructose, besides promoting atherosclerosis, induces a prothrombotic phenotype in HUVECs, thus indicating one the mechanism(s) by which this sweetener might increase cardiometabolic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson RK, Appel LJ, Brands M, et al; American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity and Metabolism and the Council on Epidemiology and Prevention (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120:1011–1020

  2. Hubert HB, Feinleib M, McNamara PM et al (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67:968–977

    Article  CAS  PubMed  Google Scholar 

  3. Sowers JR (2003) Obesity as a cardiovascular risk factor. Am J Med 115:37–41

    Article  Google Scholar 

  4. Tappy L, Le KA (2010) Metabolic effects of fructose and the world wide increase in obesity. Physiol Rev 90:23–46

    Article  CAS  PubMed  Google Scholar 

  5. Khitan Z, Kim DH (2013) Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab 2013:682673

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cozma AI, Sievenpiper JL, de Souza RJ et al (2012) Effects of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 35:1611–1620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bray GA (2012) Fructose and risk of cardiometabolic disease. Curr Atheroscler Rep 14:570–578

    Article  CAS  PubMed  Google Scholar 

  8. Beck-Nielsen H, Pedersen O, Lindskoc HO (1980) Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. Am J Clin Nutr 33:273–278

    CAS  PubMed  Google Scholar 

  9. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  10. Price DT, Loscalzo J (1999) Cellular adhesion molecules and atherogenesis. Am J Med 107:85–97

    Article  CAS  PubMed  Google Scholar 

  11. Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27(2):266–274

    Article  CAS  PubMed  Google Scholar 

  12. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  13. O’Brien KD, McDonald TO, Chait A et al (1996) Neovascular expression of E-selectin, intercellular adhesion molecule-1 and vascular adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 93:672–682

    Article  PubMed  Google Scholar 

  14. Glushakova O, Kosugi T, Roncal C et al (2008) Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. J Am Soc Nephrol 19:1712–1720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Toschi V, Gallo R, Lettino M et al (1997) Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 95(3):594–599

    Article  CAS  PubMed  Google Scholar 

  16. Ragni M, Cirillo P, Pascucci I et al (1996) A monoclonal antibody against tissue factor shortens tissue-plasminogen activator lysis time and prevents reocclusion in a rabbit model of carotid artery thrombosis. Circulation 93:1913–1920

    Article  CAS  PubMed  Google Scholar 

  17. Bierhaus A, Chen J, Liliensiek B et al (2000) LPS and cytokine activated endothelium. Semin Thromb Hemost 26:571–587

    Article  CAS  PubMed  Google Scholar 

  18. Golino P, Ragni M, Cirillo P et al (1996) Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion. Nat Med 2:35–40

    Article  CAS  PubMed  Google Scholar 

  19. Cirillo P, Golino P, Calabro P et al (2005) C-Reactive Protein induces Tissue Factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc Res 68(1):47–55

    Article  CAS  PubMed  Google Scholar 

  20. Cirillo P, Angri V, De Rosa S et al (2010) Pro athero-thrombotic effects of leptin in human coronary endothelial cells. Thromb Haemost 103(5):1065–1075

    Article  CAS  PubMed  Google Scholar 

  21. Cirillo P, Ziviello F, Pellegrino G et al (2015) The adipokine apelin-13 induces expression of prothrombotic tissue factor. Thromb Haemost 113(2):363–372

    Article  PubMed  Google Scholar 

  22. Rajwani A, Cubbon RM, Wheatcroft SB (2012) Cell specific insulin resistance: implications for atherosclerosis. Diabetes Metab Res Rev 28:627–634

    Article  CAS  PubMed  Google Scholar 

  23. Jindal A, Garcia-Touza M, Jindal N (2013) Jindal N et al Diabetic kidney disease and the cardiorenal syndrome: old disease, new perspectives. Endocrinol Metab Clin N Am 42:789–808

    Article  Google Scholar 

  24. Tan HW, Xing SS, Bi XP, Li L et al (2008) Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-kB activation. Acta Pharmacol Sin 29:1051–1059

    Article  CAS  PubMed  Google Scholar 

  25. Eckel RH, Grundy SM, Zimmet PS (2005) The metabolic syndrome. Lancet 365:1415–1428

    Article  CAS  PubMed  Google Scholar 

  26. Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96:939–949

    Article  CAS  PubMed  Google Scholar 

  27. Shinozaki K, Kashiwagi A, Nishio Y et al (1999) Abnormal biopterin metabolism is a major cause of impaired endothelium dependent relaxation through nitric/oxide/O2 imbalance in insulin resistant rat aorta. Diabetes 48:2437–2445

    Article  CAS  PubMed  Google Scholar 

  28. Gami AS, Witt BJ, Howard DE et al (2007) Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol 49:403–414

    Article  CAS  PubMed  Google Scholar 

  29. Cox CL, Stanhope KL, Schwars JM et al (2011) Circulating concentrations of monocyte chemoattractant protein-1, plasminogen activator inhibitor-1 and soluble leukocyte adhesion molecule-1 in overweight/obese men and women consuming fructose- or glucose-sweetened beverages for 10 weeks. J Clin Endocrinol Metab 96:2034–2038

    Article  Google Scholar 

  30. Dandona P, Aljada A, Chaudhuri A et al (2005) Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111:1448–1454

    Article  PubMed  Google Scholar 

  31. Silbernagel G, Machann J, Haring HU et al (2014) Plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, e-selectin and C-reactive protein levels in response to 4-week very high-fructose or -glucose diet. Eur J Clin Nutr 68:97–100

    Article  CAS  PubMed  Google Scholar 

  32. Van De Craen B, Declerck PJ, Gils A (2012) The biochemistry, physiology and pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thromb Res 130(4):576–585

    Article  Google Scholar 

  33. Meigs JB, Mittleman MA, Nathan DM et al (2000) Hyperinsulinemia, hyperglycemia and impaired hemostasis: the Framingham Offspring Study. JAMA 283:221–228

    Article  CAS  PubMed  Google Scholar 

  34. Pandolfi A, Cetrullo D, Polishick R et al (2001) Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arterioscler Thrombo Vasc Biol 21:1378–1382

    Article  CAS  Google Scholar 

  35. Van der Wouwer M, Collen D, Conway EM et al (2004) Thrombomodulin-protein C E-EPCR system. Integrated to regulate coagulation and inflammation. Arter Thromb Vasc Biol 24:1374–1383

    Article  Google Scholar 

  36. Wang HJ, Huang HC, Chuang YC et al (2012) Modulation of tissue factor and thrombomodulin expression in human aortic endothelial cells incubated with high glucose. Acta Diabetol 49:125–130

    Article  CAS  PubMed  Google Scholar 

  37. Conway EM, Liu L, Nowakosky B et al (1994) Heat shock of vascular endothelial cells induces and up-regulatory transcriptional response of the thrombomodulin gene that is delayed in onset and does not attenuate. J Biol Chem 269:22804–22810

    CAS  PubMed  Google Scholar 

  38. Barnes PJ, Karin M (1997) Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory disease. N Engl J Med 336:1066–1071

    Article  CAS  PubMed  Google Scholar 

  39. Flohe L, Brigelius-Flohe R, Saliou C et al (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22:1115–1126

    Article  CAS  PubMed  Google Scholar 

  40. Oeth P, Parry GC, Mackman N (1997) Regulation of the tissue factor gene in human monocytic cells. Arterioscler Thromb Vasc Biol 17(2):365–374

    Article  CAS  PubMed  Google Scholar 

  41. Ritchie ME (1998) Nuclear Factor-κB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 98:1707–1713

    Article  CAS  PubMed  Google Scholar 

  42. Wilson SH, Best PJ, Edwards WD et al (2002) Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis 160:147–153

    Article  CAS  PubMed  Google Scholar 

  43. Carmeliet P, Mackman N, Moons L et al (1996) Role of tissue factor in embryonic blood vessels development. Nature 383:73–75

    Article  CAS  PubMed  Google Scholar 

  44. Bromberg ME, Sundaraman R, Homer RJ et al (1995) Tissue factor promotes melanoma metastasis by a pathway independent of blood coagulation. Proc Natl Acad Sci USA 92:8205–8209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Randolph GJ, Luther T, Albrecht A et al (1998) Role of tissue factor in adhesion of mononuclear phagocytes to and trafficking through endothelium in vitro. Blood 2:4167–4177

    Google Scholar 

  46. Riewald M, Ruf W (2001) Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci USA 98:7742–7747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lima LG, Monteiro RQ (2013) Activation of blood coagulation in cancer: implication for tumor progression. Biosci Rep 33:e00064

    Article  PubMed Central  PubMed  Google Scholar 

  48. Cirillo P, Calì G, Golino P et al (2004) Tissue factor binding of activated factor VII triggers smooth muscle cell proliferation via extracellular signal-regulated kinase activation. Circulation 109:2911–2916

    Article  CAS  PubMed  Google Scholar 

  49. van den Berg YW, Osanto S, Reitsma PH et al (2012) The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 119:924–932

    Article  PubMed  Google Scholar 

  50. Das UN (2015) Sucrose, fructose, glucose and their link to metabolic syndrome and cancer. Nutrition 31:249–257

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plinio Cirillo.

Additional information

This paper is dedicated to my daughter Camilla. Honey, “you are the sunshine of my life”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirillo, P., Pellegrino, G., Conte, S. et al. Fructose induces prothrombotic phenotype in human endothelial cells. J Thromb Thrombolysis 40, 444–451 (2015). https://doi.org/10.1007/s11239-015-1243-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-015-1243-1

Keywords

Navigation