Skip to main content
Log in

Body mass index predicts major bleeding risks in patients on warfarin

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Despite the lack of an optimum dosing strategy in obese patients, warfarin remains the most commonly used anticoagulant. Body mass index (BMI) >30 has been linked to increased time to obtain a therapeutic international normalized ratio on initiation of warfarin as well as higher maintenance dose. Despite higher dosage requirements, few studies have examined the relationship between warfarin and bleeding events in obese individuals. We examined the performance of BMI in predicting the incidence of bleeding at an anticoagulation clinic (ACC) over a 1 year period. Eight hundred and sixty-three patients followed in the ACC over a 1 year period were evaluated for bleeds in relation to BMI [defined as weight (kg)/height (m2)]. Seventy-one of the 863 patients had a bleeding event (8.2 %); mean age 69.5 years and 44 % females. BMI categories were normal weight (21 %), overweight (38 %), obese class I (21 %), II (9 %), and III (11.3 %), respectively. Prevalence of major and minor bleeding events were 4.4 and 3.8 %, respectively. In univariate analyses, hazard ratio (HR) for major bleeding risks increases with higher obesity categories (HR 1.3, 1.85, and 1.93 for classes I, II, III, respectively). In multivariable adjusted model obesity classes II and III significantly increased the risk of major bleeds (HR 1.84, p < 0.001). Bleeding risk is higher in obese compared to normal weight individuals who are on warfarin. These results suggests that BMI plays a role in bleeding events in patients on warfarin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gage BF, Eby C, Johnson JA et al (2000) Management and dosing of warfarin Therapy. Am J Med 109:326–331. doi:10.1038/clpt.2008.10.Use

    Article  Google Scholar 

  2. Lewis JD (1987) The management of the limb in acute venous thrombosis. Blood Rev 1:230–236. doi:10.1016/0268-960X(87)90024-5

    Article  CAS  PubMed  Google Scholar 

  3. Parvizi J, Huang R, Raphael IJ et al (2015) Timing of symptomatic pulmonary embolism with warfarin following arthroplasty. J Arthroplast. doi:10.1016/j.arth.2015.01.004

    Google Scholar 

  4. Arepally GM, Ortel TL (2015) Changing practice of anticoagulation : will target-specific anticoagulants replace warfarin ? Annu Rev Med 66:214–253. doi:10.1146/annurev-med-051113-024633

    Article  Google Scholar 

  5. Kokame GT (2002) Management options for early. Methods 31:118–126

    Google Scholar 

  6. Deykin D (1970) Warfarin therapy (first of two parts). N Engl J Med 283:691–693

    Article  CAS  PubMed  Google Scholar 

  7. Deykin D (1970) Warfarin therapy (second of two parts). N Engl J Med 283:801–803

    Article  CAS  PubMed  Google Scholar 

  8. Thomas IC, Sorrentino MJ (2014) Bleeding risk prediction models in atrial fibrillation. Curr Cardiol Rep 16:1–8. doi:10.1007/s11886-013-0432-9

    Google Scholar 

  9. Loewen P, Dahri K (2011) Risk of bleeding with oral anticoagulants: an updated systematic review and performance analysis of clinical prediction rules. Ann Hematol 90:1191–1200. doi:10.1007/s00277-011-1267-3

    Article  CAS  PubMed  Google Scholar 

  10. Airaksinen KEJ, Suurmunne H, Porela P et al (2010) Usefulness of outpatient bleeding risk index to predict bleeding complications in patients with long-term oral anticoagulation undergoing coronary stenting. Am J Cardiol 106:175–179. doi:10.1016/j.amjcard.2010.03.011

    Article  PubMed  Google Scholar 

  11. Ruíz-Giménez N, Suárez C, González R et al (2008) Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIETE Registry. Thromb Haemost 100:26–31. doi:10.1160/TH08-03-0193

    PubMed  Google Scholar 

  12. Pisters R, Lane DA, Nieuwlaat R et al (2010) A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro heart survey. Chest 138:1093–1100. doi:10.1378/chest.10-0134

    Article  PubMed  Google Scholar 

  13. Lip GYH, Frison L, Halperin JL, Lane DA (2011) Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile INR, elderly, drug). J Am Coll Cardiol 57:173–180. doi:10.1016/j.jacc.2010.09.024

    Article  CAS  PubMed  Google Scholar 

  14. Ciaroni S, Cuenoud L, Bloch A (2000) Clinical study to investigate the predictive parameters for the onset of atrial fibrillation in patients with essential hypertension. Am Heart J 139:814–819

    Article  CAS  PubMed  Google Scholar 

  15. Ashburner JM, Go AS, Reynolds K et al (2015) Comparison of frequency and outcome of major gastrointestinal hemorrhage in patients with atrial fibrillation on versus not receiving warfarin therapy (from the ATRIA and ATRIA-CVRN cohorts). Am J Cardiol 115:40–46. doi:10.1016/j.amjcard.2014.10.006

    Article  PubMed  Google Scholar 

  16. Mueller JA, Patel T, Halawa A et al (2014) Warfarin dosing and body mass index. Ann Pharmacother 48:584–588. doi:10.1177/1060028013517541

    Article  PubMed  Google Scholar 

  17. Wallace JL, Reaves AB, Tolley EA et al (2013) Comparison of initial warfarin response in obese patients versus non-obese patients. J Thromb Thrombolysis 36:96–101. doi:10.1007/s11239-012-0811-x

    Article  CAS  PubMed  Google Scholar 

  18. Gurwitz J, Avorn J (1992) Aging and the anticoagulant response to warfarin therapy. Ann Intern Med 116:901–904

    Article  CAS  PubMed  Google Scholar 

  19. Kamali F, Khan TI, King BP et al (2004) Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 75:204–212. doi:10.1016/j.clpt.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  20. Yoo S-H, Nah H-W, Jo M-W et al (2009) Age and body weight adjusted warfarin initiation program for ischaemic stroke patients. Eur J Neurol 16:1100–1105. doi:10.1111/j.1468-1331.2009.02745.x

    Article  PubMed  Google Scholar 

  21. Gage BF (2008) Use of pharmacogenetics and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84(3):326–331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yuan H-Y, Chen J-J, Lee MTM et al (2005) A novel functional VKCOR1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14:1745–1751. doi:10.1093/hmg/ddi180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Pamela Burgwinkle and Ray Stierer for their contributions in conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adedotun A. Ogunsua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunsua, A.A., Touray, S., Lui, J.K. et al. Body mass index predicts major bleeding risks in patients on warfarin. J Thromb Thrombolysis 40, 494–498 (2015). https://doi.org/10.1007/s11239-015-1226-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-015-1226-2

Keywords

Navigation