Skip to main content
Log in

Elevated plasma CL-K1 level is associated with a risk of developing disseminated intravascular coagulation (DIC)

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Collectin kidney 1 (CL-K1) is a recently identified collectin that is synthesized in most organs and circulates in blood. CL-K1 is an innate immune molecule that may play a significant role in host defense. As some collectins also play a role in coagulation, we hypothesized that an effect of CL-K1 may be apparent in disseminated intravascular coagulation (DIC), a gross derangement of the coagulation system that occurs in the setting of profound activation of the innate immune system. DIC is a grave medical condition with a high incidence of multiple organ failure and high mortality and yet there are no reliable biomarkers or risk factors. In our present study, we measured plasma CL-K1 concentration in a total of 659 specimens, including 549 DIC patients, 82 non-DIC patients and 27 healthy volunteers. The median plasma CL-K1 levels in these cohorts were 424, 238 and 245 ng/ml, respectively, with no significant difference in the latter two groups. The incidence of elevated plasma CL-K1 was significantly higher in the DIC patients compared to the non-DIC patients, resulting in an odds ratio of 1.929 (confidence interval 1.041–3.866). Infection, renal diseases, respiratory diseases, and cardiac diseases were more frequently observed in the DIC group than in the non-DIC group. In the DIC group, vascular diseases were associated with elevated plasma CL-K1 levels while age and acute illness had little effect on plasma CL-K1 levels. Independent of DIC, elevated plasma CL-K1 levels were associated with respiratory disease and coagulation disorders. These results suggest that specific diseases may affect CL-K1 synthesis in an organ dependent manner and that elevated plasma CL-K1 levels are associated with the presence of DIC. Further investigations in cohorts of patients are warranted. We propose that elevated plasma CL-K1 may be a new useful risk factor and possibly biomarker for the prediction of developing DIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thiel S, Takahashi K (2013) Collectins. In: Encyclopedia of life sciences. Wiley, Chichester, UK

  2. Keshi H, Sakamoto T, Kawai T, Ohtani K, Katoh T, Jang SJ, Motomura W, Yoshizaki T, Fukuda M, Koyama S, Fukuzawa J, Fukuoh A, Yoshida I, Suzuki Y, Wakamiya N (2006) Identification and characterization of a novel human collectin CL-K1. Microbiol Immunol 50(12):1001–1013

    Article  CAS  PubMed  Google Scholar 

  3. Ohtani K, Suzuki Y, Wakamiya N (2012) Biological functions of the novel collectins CL-L1, CL-K1, and CL-P1. J Biomed Biotechnol 2012:493945. doi:10.1155/2012/493945

    PubMed  PubMed Central  Google Scholar 

  4. Thiel S (2007) Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol 44(16):3875–3888

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K (2008) Lessons learned from murine models of mannose-binding lectin deficiency. Biochem Soc Trans 36(Pt 6):1487–1490. doi:10.1042/BST0361487

    Article  CAS  PubMed  Google Scholar 

  6. Yoshizaki T, Ohtani K, Motomura W, Jang SJ, Mori K, Kitamoto N, Yoshida I, Suzuki Y, Wakamiya N (2012) Comparison of human blood concentrations of collectin kidney 1 and mannan-binding lectin. J Biochem 151(1):57–64. doi:10.1093/jb/mvr114

    Article  CAS  PubMed  Google Scholar 

  7. Selman L, Henriksen ML, Brandt J, Palarasah Y, Waters A, Beales PL, Holmskov U, Jorgensen TJ, Nielsen C, Skjodt K, Hansen S (2012) An enzyme-linked immunosorbent assay (ELISA) for quantification of human collectin 11 (CL-11, CL-K1). J Immunol Methods 375(1–2):182–188. doi:10.1016/j.jim.2011.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steffensen R, Thiel S, Varming K, Jersild C, Jensenius JC (2000) Detection of structural gene mutations and promoter polymorphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers. J Immunol Methods 241(1–2):33–42

    Article  CAS  PubMed  Google Scholar 

  9. Garred P, Larsen F, Madsen HO, Koch C (2003) Mannose-binding lectin deficiency—revisited. Mol Immunol 40(2–4):73–84

    Article  CAS  PubMed  Google Scholar 

  10. Uemura K, Saka M, Nakagawa T, Kawasaki N, Thiel S, Jensenius JC, Kawasaki T (2002) L-MBP is expressed in epithelial cells of mouse small intestine. J Immunol 169(12):6945–6950

    Article  CAS  PubMed  Google Scholar 

  11. Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, Kenny J, Waters A, Jenkins D, Kaissi AA, Leal GF, Dallapiccola B, Carnevale F, Bitner-Glindzicz M, Lees M, Hennekam R, Stanier P, Burns AJ, Peeters H, Alkuraya FS, Beales PL (2011) Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genet 43(3):197–203. doi:10.1038/ng.757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen S, Selman L, Palaniyar N, Ziegler K, Brandt J, Kliem A, Jonasson M, Skjoedt MO, Nielsen O, Hartshorn K, Jorgensen TJ, Skjodt K, Holmskov U (2010) Collectin 11 (CL-11, CL-K1) is a MASP-1/3-associated plasma collectin with microbial-binding activity. J Immunol 185(10):6096–6104. doi:10.4049/jimmunol.1002185

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Chang WC, Takahashi M, Pavlov V, Ishida Y, La Bonte L, Shi L, Fujita T, Stahl GL, Van Cott EM (2011) Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation. Immunobiology 216(1–2):96–102. doi:10.1016/j.imbio.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sekine H, Takahashi M, Iwaki D, Fujita T (2013) The role of MASP-1/3 in complement activation. Adv Exp Med Biol 735:41–53

    Article  CAS  PubMed  Google Scholar 

  15. Gulla KC, Gupta K, Krarup A, Gal P, Schwaeble WJ, Sim RB, O’Connor CD, Hajela K (2010) Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology 129(4):482–495. doi:10.1111/j.1365-2567.2009.03200.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Presanis JS, Hajela K, Ambrus G, Gal P, Sim RB (2004) Differential substrate and inhibitor profiles for human MASP-1 and MASP-2. Mol Immunol 40(13):921–929

    Article  CAS  PubMed  Google Scholar 

  17. Toh CH, Ticknor LO, Downey C, Giles AR, Paton RC, Wenstone R (2003) Early identification of sepsis and mortality risks through simple, rapid clot-waveform analysis. Implications of lipoprotein-complexed C reactive protein formation. Intensive Care Med 29(1):55–61. doi:10.1007/s00134-002-1557-2

    PubMed  Google Scholar 

  18. Smith EY, Charles LA, Van Cott EM (2004) Biphasic activated partial thromboplastin time waveform and adverse events in non-intensive care unit patients. Am J Clin Pathol 121(1):138–141. doi:10.1309/W4F7-892W-JE6Y-1W7Y

    Article  PubMed  Google Scholar 

  19. Penner JA (1998) Disseminated intravascular coagulation in patients with multiple organ failure of non-septic origin. Semin Thromb Hemost 24(1):45–52. doi:10.1055/s-2007-995822

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto T, Wada H, Nishioka Y, Nishio M, Abe Y, Nishioka J, Kamikura Y, Sase T, Kaneko T, Houdijk WP, Nobori T, Shiku H (2006) Frequency of abnormal biphasic aPTT clot waveforms in patients with underlying disorders associated with disseminated intravascular coagulation. Clin Appl Thromb Hemost 12(2):185–192

    Article  PubMed  Google Scholar 

  21. Toh CH, Samis J, Downey C, Walker J, Becker L, Brufatto N, Tejidor L, Jones G, Houdijk W, Giles A, Koschinsky M, Ticknor LO, Paton R, Wenstone R, Nesheim M (2002) Biphasic transmittance waveform in the APTT coagulation assay is due to the formation of a Ca(++)-dependent complex of C-reactive protein with very-low-density lipoprotein and is a novel marker of impending disseminated intravascular coagulation. Blood 100(7):2522–2529. doi:10.1182/blood.V100.7.2522

    Article  CAS  PubMed  Google Scholar 

  22. Downey C, Kazmi R, Toh CH (1998) Early identification and prognostic implications in disseminated intravascular coagulation through transmittance waveform analysis. Thromb Haemost 80(1):65–69

    CAS  PubMed  Google Scholar 

  23. Krause RD, Anand VD, Gruemer HD, Willke TA (1975) The impact of laboratory error on the normal range: a Bayesian model. Clin Chem 21(3):321–324

    CAS  PubMed  Google Scholar 

  24. Hapke M, Patil K (1981) The establishment of normal limits for serum proteins measured by the rate nephelometer. Concepts of normality revisited. Hum Pathol 12(11):1011–1015

    Article  CAS  Google Scholar 

  25. Stemerman MB (1985) Coagulation in the elderly. Clin Geriatr Med 1(4):869–885

    CAS  PubMed  Google Scholar 

  26. La Bonte LR, Pavlov VI, Tan YS, Takahashi K, Takahashi M, Banda NK, Zou C, Fujita T, Stahl GL (2012) Mannose-binding lectin-associated serine protease-1 is a significant contributor to coagulation in a murine model of occlusive thrombosis. J Immunol 188(2):885–891. doi:10.4049/jimmunol.1102916

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC, Eggleton P, Hansen S, Holmskov U, Reid KB, Jensenius JC (1997) A second serine protease associated with mannan-binding lectin that activates complement. Nature 386(6624):506–510

    Article  CAS  PubMed  Google Scholar 

  28. Matsushita M (2009) Ficolins: complement-activating lectins involved in innate immunity. J Innate Immun 2(1):24–32. doi:10.1159/000228160

    Article  PubMed  Google Scholar 

  29. Takahashi K, Ezekowitz RA (2005) The role of the mannose-binding lectin in innate immunity. Clin Infect Dis 41(Suppl 7):S440–S444

    Article  CAS  PubMed  Google Scholar 

  30. Moller-Kristensen M, Hamblin MR, Thiel S, Jensenius JC, Takahashi K (2007) Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice. J Invest Dermatol 127(6):1524–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang WC, White MR, Moyo P, McClear S, Thiel S, Hartshorn KL, Takahashi K (2010) Lack of the pattern recognition molecule mannose-binding lectin increases susceptibility to influenza A virus infection. BMC Immunol 11(1):64. doi:10.1186/1471-2172-11-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Larvie M, Shoup T, Chang WC, Chigweshe L, Hartshorn K, White MR, Stahl GL, Elmaleh DR, Takahashi K (2012) Mannose-binding lectin binds to amyloid beta protein and modulates inflammation. J Biomed Biotechnol 2012:929803. doi:10.1155/2012/929803

    PubMed  PubMed Central  Google Scholar 

  33. Ip WK, Lau YL, Chan SY, Mok CC, Chan D, Tong KK, Lau CS (2000) Mannose-binding lectin and rheumatoid arthritis in southern Chinese. Arthritis Rheum 43(8):1679–1687

    Article  CAS  PubMed  Google Scholar 

  34. Motomura W, Yoshizaki T, Ohtani K, Okumura T, Fukuda M, Fukuzawa J, Mori K, Jang SJ, Nomura N, Yoshida I, Suzuki Y, Kohgo Y, Wakamiya N (2008) Immunolocalization of a novel collectin CL-K1 in murine tissues. J Histochem Cytochem 56(3):243–252. doi:10.1369/jhc.7A7312.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank laboratory personnel in the Coagulation Laboratory at the Massachusetts General Hospital. The work was supported in part by NIH Grant U01-074503 (K.T.) and Grants-in-Aid for Scientific Research of the Japan of Ministry of Education, Culture, Sports, Science, and Technology, 19390227 (N.W). This work was also supported by grants from Fuso Pharmaceutical Industry, Co., the Smoking Research Foundation, and the Mizutani foundation for glycoscience (N.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazue Takahashi.

Additional information

Elizabeth M. Van Cott and Nobutaka Wakamiya are co-senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Ohtani, K., Larvie, M. et al. Elevated plasma CL-K1 level is associated with a risk of developing disseminated intravascular coagulation (DIC). J Thromb Thrombolysis 38, 331–338 (2014). https://doi.org/10.1007/s11239-013-1042-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-1042-5

Keywords

Navigation