Skip to main content

Advertisement

Log in

Emerging paradigms in arterial thrombosis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

A traditional perspective of arterial thrombosis begins with vessel wall injury and exposure of subendothelial proteins, including collagen and tissue factor, to circulating cellular and non-cellular components. Adhesion and activation of platelets, mediated by their interaction with von Willebrand protein and collagen, respectively, coupled with tissue factor-mediated activation of coagulation proteins, results in thrombin generation and fibrin formation. While this time-honored paradigm remains firm and soundly based, emerging evidence suggests that arterial thrombosis is much more complex and dynamic than originally believed. Several novel triggers, templates and facilitators, such as cell-free nucleic acids, histones, DNA-histone complexes, polyphosphates, and microvesicles have recently been identified and require inclusion in the expanding universe of thrombosis as a dominant phenotype of human disease. Because these mediators appear to have modest if any effect on physiologic hemostasis, they likely represent acquired and disease or condition-dependent processes that are highly attractive targets for pharmacologic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451(7181):914–918. doi:10.1038/nature06797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hoffman M, Monroe DM 3rd (2001) A cell-based model of hemostasis. Thromb Haemost 85(6):958–965

    CAS  PubMed  Google Scholar 

  3. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949. doi:10.1056/NEJMra0801082

    Article  CAS  PubMed  Google Scholar 

  4. Dubois C, Panicot-Dubois L, Merrill-Skoloff G, Furie B, Furie BC (2006) Glycoprotein VI-dependent and -independent pathways of thrombus formation in vivo. Blood 107(10):3902–3906. doi:10.1182/blood-2005-09-3687

    Article  CAS  PubMed  Google Scholar 

  5. Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D, Heinzmann U, Nieswandt B (2003) A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197(1):41–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bergmeier W, Piffath CL, Goerge T, Cifuni SM, Ruggeri ZM, Ware J, Wagner DD (2006) The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci USA 103(45):16900–16905. doi:10.1073/pnas.0608207103

    Article  CAS  PubMed  Google Scholar 

  7. Morrissey JH, Macik BG, Neuenschwander PF, Comp PC (1993) Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81(3):734–744

    CAS  PubMed  Google Scholar 

  8. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057–1068

    Article  CAS  PubMed  Google Scholar 

  9. Roque M, Reis ED, Fuster V, Padurean A, Fallon JT, Taubman MB, Chesebro JH, Badimon JJ (2000) Inhibition of tissue factor reduces thrombus formation and intimal hyperplasia after porcine coronary angioplasty. J Am Coll Cardiol 36(7):2303–2310

    Article  CAS  PubMed  Google Scholar 

  10. Marmur JD, Thiruvikraman SV, Fyfe BS, Guha A, Sharma SK, Ambrose JA, Fallon JT, Nemerson Y, Taubman MB (1996) Identification of active tissue factor in human coronary atheroma. Circulation 94(6):1226–1232

    Article  CAS  PubMed  Google Scholar 

  11. Hathcock JJ, Nemerson Y (2004) Platelet deposition inhibits tissue factor activity: in vitro clots are impermeable to factor Xa. Blood 104(1):123–127. doi:10.1182/blood-2003-12-4352

    Article  CAS  PubMed  Google Scholar 

  12. Mandel P, Metais P (1948) C R Seances Soc Biol Fil 142(3–4):241–243

    CAS  PubMed  Google Scholar 

  13. Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL (1994) Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev 3(1):67–71

    CAS  PubMed  Google Scholar 

  14. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 86(4):774–779

    Article  CAS  PubMed  Google Scholar 

  15. Lo YM, Chan LY, Lo KW, Leung SF, Zhang J, Chan AT, Lee JC, Hjelm NM, Johnson PJ, Huang DP (1999) Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59(6):1188–1191

    CAS  PubMed  Google Scholar 

  16. Pornthanakasem W, Shotelersuk K, Termrungruanglert W, Voravud N, Niruthisard S, Mutirangura A (2001) Human papillomavirus DNA in plasma of patients with cervical cancer. BMC Cancer 1:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tan EM, Schur PH, Carr RI, Kunkel HG (1966) Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest 45(11):1732–1740. doi:10.1172/JCI105479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 46(3):319–323

    CAS  PubMed  Google Scholar 

  19. Rainer TH, Wong LK, Lam W, Yuen E, Lam NY, Metreweli C, Lo YM (2003) Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 49(4):562–569

    Article  CAS  PubMed  Google Scholar 

  20. Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, Wu JT (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 327(1–2):95–101

    Article  CAS  PubMed  Google Scholar 

  21. Giacona MB, Ruben GC, Iczkowski KA, Roos TB, Porter DM, Sorenson GD (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17(1):89–97

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki N, Kamataki A, Yamaki J, Homma Y (2008) Characterization of circulating DNA in healthy human plasma. Clin Chim Acta 387(1–2):55–58. doi:10.1016/j.cca.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581(5):795–799. doi:10.1016/j.febslet.2007.01.051

    Article  CAS  PubMed  Google Scholar 

  24. Nakazawa F, Kannemeier C, Shibamiya A, Song Y, Tzima E, Schubert U, Koyama T, Niepmann M, Trusheim H, Engelmann B, Preissner KT (2005) Extracellular RNA is a natural cofactor for the (auto-)activation of Factor VII-activating protease (FSAP). Biochem J 385(Pt 3):831–838. doi:10.1042/BJ20041021

    CAS  PubMed  Google Scholar 

  25. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Gunther A, Engelmann B, Preissner KT (2007) Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA 104(15):6388–6393. doi:10.1073/pnas.0608647104

    Article  CAS  PubMed  Google Scholar 

  26. Swystun LL, Mukherjee S, Liaw PC (2011) Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost 9(11):2313–2321. doi:10.1111/j.1538-7836.2011.04465.x

    Article  CAS  PubMed  Google Scholar 

  27. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665

    CAS  PubMed  Google Scholar 

  28. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. doi:10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  29. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21(2):290–304. doi:10.1038/cr.2010.150

    Article  CAS  PubMed  Google Scholar 

  30. Steinberg BE, Grinstein S (2007) Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE 379:pe11. doi:10.1126/stke.3792007pe11

    Google Scholar 

  31. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–1321. doi:10.1038/nm.2053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Holdenrieder S, Stieber P (2009) Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci 46(1):1–24. doi:10.1080/10408360802485875

    Article  CAS  PubMed  Google Scholar 

  33. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT (2011) Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118(7):1952–1961. doi:10.1182/blood-2011-03-343061

    Article  CAS  PubMed  Google Scholar 

  34. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469. doi:10.1038/nm1565

    Article  CAS  PubMed  Google Scholar 

  35. Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ (2010) Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 584(14):3193–3197. doi:10.1016/j.febslet.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  36. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107(36):15880–15885. doi:10.1073/pnas.1005743107

    Article  CAS  PubMed  Google Scholar 

  37. von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Kollnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209(4):819–835. doi:10.1084/jem.20112322

    Article  Google Scholar 

  38. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, Konrad I, Kennerknecht E, Reges K, Holdenrieder S, Braun S, Reinhardt C, Spannagl M, Preissner KT, Engelmann B (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896. doi:10.1038/nm.2184

    Article  CAS  PubMed  Google Scholar 

  39. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7(2):e32366. doi:10.1371/journal.pone.0032366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Okrent DG, Lichtenstein AK, Ganz T (1990) Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am Rev Respir Dis 141(1):179–185

    Article  CAS  PubMed  Google Scholar 

  41. Pereira LF, Marco FM, Boimorto R, Caturla A, Bustos A, De la Concha EG, Subiza JL (1994) Histones interact with anionic phospholipids with high avidity; its relevance for the binding of histone–antihistone immune complexes. Clin Exp Immunol 97(2):175–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kleine TJ, Gladfelter A, Lewis PN, Lewis SA (1995) Histone-induced damage of a mammalian epithelium: the conductive effect. Am J Physiol 268(5 Pt 1):C1114–C1125

    CAS  PubMed  Google Scholar 

  43. Sporn LA, Marder VJ, Wagner DD (1986) Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 46(2):185–190

    Article  CAS  PubMed  Google Scholar 

  44. Fuchs TA, Bhandari AA, Wagner DD (2011) Histones induce rapid and profound thrombocytopenia in mice. Blood 118(13):3708–3714. doi:10.1182/blood-2011-01-332676

    Article  CAS  PubMed  Google Scholar 

  45. Watson K, Gooderham NJ, Davies DS, Edwards RJ (1999) Nucleosomes bind to cell surface proteoglycans. J Biol Chem 274(31):21707–21713

    Article  CAS  PubMed  Google Scholar 

  46. Clejan L, Menahem H (1977) Binding of deoxyribonucleic acid to the surface of human platelets. Acta Haematol 58(2):84–88

    Article  CAS  PubMed  Google Scholar 

  47. Dorsch CA (1981) Binding of single-strand DNA to human platelets. Thromb Res 24(1–2):119–129

    Article  CAS  PubMed  Google Scholar 

  48. Higuchi DA, Wun TC, Likert KM, Broze GJ Jr (1992) The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood 79(7):1712–1719

    CAS  PubMed  Google Scholar 

  49. Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279(43):44250–44257. doi:10.1074/jbc.M406261200M406261200

    Article  CAS  PubMed  Google Scholar 

  50. Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renne T (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139(6):1143–1156. doi:10.1016/j.cell.2009.11.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 103(4):903–908. doi:10.1073/pnas.0507195103

    Article  CAS  PubMed  Google Scholar 

  52. Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, Morrissey JH (2010) Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 116(20):4353–4359. doi:10.1182/blood-2010-01-266791

    Article  CAS  PubMed  Google Scholar 

  53. Mutch NJ, Myles T, Leung LL, Morrissey JH (2010) Polyphosphate binds with high affinity to exosite II of thrombin. J Thromb Haemost 8(3):548–555. doi:10.1111/j.1538-7836.2009.03723.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Bae JS, Lee W, Rezaie AR (2012) Polyphosphate elicits pro-inflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost 10(6):1145–1151. doi:10.1111/j.1538-7836.2012.04671.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107(9):1047–1057. doi:10.1161/CIRCRESAHA.110.226456

    Article  CAS  PubMed  Google Scholar 

  56. Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31(1):15–26. doi:10.1161/ATVBAHA.109.200956

    Article  CAS  PubMed  Google Scholar 

  57. Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renne T, Ten Cate H, Spronk HM (2012) Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 10(7):1355–1362. doi:10.1111/j.1538-7836.2012.04758.x

    Article  Google Scholar 

  58. Berckmans RJ, Nieuwland R, Boing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85(4):639–646

    CAS  PubMed  Google Scholar 

  59. Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S, Kyrle PA, Weltermann A (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 97(1):119–123

    CAS  PubMed  Google Scholar 

  60. Kambas K, Markiewski MM, Pneumatikos IA, Rafail SS, Theodorou V, Konstantonis D, Kourtzelis I, Doumas MN, Magotti P, Deangelis RA, Lambris JD, Ritis KD (2008) C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol 180(11):7368–7375

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, Rafail S, Kartalis G, Sideras P, Lambris JD (2006) A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 177(7):4794–4802

    CAS  PubMed  Google Scholar 

  62. Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102(7):2678–2683. doi:10.1182/blood-2003-03-0693

    Article  CAS  PubMed  Google Scholar 

  63. Schecter AD, Spirn B, Rossikhina M, Giesen PL, Bogdanov V, Fallon JT, Fisher EA, Schnapp LM, Nemerson Y, Taubman MB (2000) Release of active tissue factor by human arterial smooth muscle cells. Circ Res 87(2):126–132

    Article  CAS  PubMed  Google Scholar 

  64. Owens AP 3rd, Mackman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108(10):1284–1297. doi:10.1161/CIRCRESAHA.110.233056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI (2007) Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 97(3):425–434

    CAS  PubMed  Google Scholar 

  66. Giesen PL, Rauch U, Bohrmann B, Kling D, Roque M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y (1999) Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 96(5):2311–2315

    Article  CAS  PubMed  Google Scholar 

  67. Johnson GJ, Leis LA, Bach RR (2009) Tissue factor activity of blood mononuclear cells is increased after total knee arthroplasty. Thromb Haemost 102(4):728–734. doi:10.1160/TH09-04-0261

    CAS  PubMed  Google Scholar 

  68. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, Celi A, Croce K, Furie BC, Furie B (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197(11):1585–1598. doi:10.1084/jem.20021868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hoffman M, Whinna HC, Monroe DM (2006) Circulating tissue factor accumulates in thrombi, but not in hemostatic plugs. J Thromb Haemost 4(9):2092–2093. doi:10.1111/j.1538-7836.2006.02085.x

    Article  CAS  PubMed  Google Scholar 

  70. Mackman N, Tilley RE, Key NS (2007) Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 27(8):1687–1693. doi:10.1161/ATVBAHA.107.141911

    Article  CAS  PubMed  Google Scholar 

  71. Chou J, Mackman N, Merrill-Skoloff G, Pedersen B, Furie BC, Furie B (2004) Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood 104(10):3190–3197. doi:10.1182/blood-2004-03-0935

    Article  CAS  PubMed  Google Scholar 

  72. Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B (2002) Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8(10):1175–1181. doi:10.1038/nm782

    Article  CAS  PubMed  Google Scholar 

  73. Day SM, Reeve JL, Pedersen B, Farris DM, Myers DD, Im M, Wakefield TW, Mackman N, Fay WP (2005) Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 105(1):192–198. doi:10.1182/blood-2004-06-2225

    Article  CAS  PubMed  Google Scholar 

  74. Biro E, Sturk-Maquelin KN, Vogel GM, Meuleman DG, Smit MJ, Hack CE, Sturk A, Nieuwland R (2003) Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 1(12):2561–2568

    Article  CAS  PubMed  Google Scholar 

  75. Ramacciotti E, Hawley AE, Farris DM, Ballard NE, Wrobleski SK, Myers DD Jr, Henke PK, Wakefield TW (2009) Leukocyte- and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis. Thromb Haemost 101(4):748–754

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Wang JG, Manly D, Kirchhofer D, Pawlinski R, Mackman N (2009) Levels of microparticle tissue factor activity correlate with coagulation activation in endotoxemic mice. J Thromb Haemost 7(7):1092–1098. doi:10.1111/j.1538-7836.2009.03448.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5(3):520–527. doi:10.1111/j.1538-7836.2007.02369.x

    Article  CAS  PubMed  Google Scholar 

  78. Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, Furie B (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15(22):6830–6840. doi:10.1158/1078-0432.CCR-09-0371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Morel O, Pereira B, Averous G, Faure A, Jesel L, Germain P, Grunebaum L, Ohlmann P, Freyssinet JM, Bareiss P, Toti F (2009) Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis 204(2):636–641. doi:10.1016/j.atherosclerosis.2008.10.039

    Article  CAS  PubMed  Google Scholar 

  80. Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JW, Radder JK (2002) Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106(19):2442–2447

    Article  CAS  PubMed  Google Scholar 

  81. Nieuwland R, Berckmans RJ, McGregor S, Boing AN, Romijn FP, Westendorp RG, Hack CE, Sturk A (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95(3):930–935

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Wisler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisler, J.W., Becker, R.C. Emerging paradigms in arterial thrombosis. J Thromb Thrombolysis 37, 4–11 (2014). https://doi.org/10.1007/s11239-013-0965-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-0965-1

Keywords

Navigation