Skip to main content

Advertisement

Log in

Lowering homocysteine levels with folic acid and B-vitamins do not reduce early atherosclerosis, but could interfere with cognitive decline and Alzheimer’s disease

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Inheired or acquired hyperhomocysteinemia (HHcy) is associated with several impairments, as certain tumors, deep venous thrombosis, tube neural defects, osteoporosis, early atherosclerosis and vascular acute events (IMA, stroke, PVD), mild cognitive impairments till Alzheimer’s disease (AD). But, vascular and neuronal derangements are the most frequent HHcy-manifestations. As far as early atherosclerosis, some clinical trials demonstrated that folates and B6–12 vitamins supplementation is unable to reduce atherosclerotic lesions and cardiovascular events, even if it lowers HHcy levels. Thus, for atherosclerosis and its acute events (IMA, stroke, PVD) HHcy acts as a powerful biomarker rather than a risk factor. For that, the supplementation with folates and B vitamins to lower atherosclerotic lesions-events in hyperhomocysteinemic patients is not recommended. On the contrary, several clinical investigations demonstrated that folates and vitamins administration is able to reduce Hcy serum levels and antagonize some mechanisms favouring neurodegenerative impairments, as mild cognitive impairment, AD and dementia. Thus, contrarily to the atherosclerotic manifestations in hyperhomocysteinemic patients, preventive treatment with folates and B6–12 vitamins reduces Hcy concentration and could prevent or delay cognitive decline and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bostom AG, Silbershatz H, Rosenberg IH, Selubh J, D’Agostino RB, Wolf PA et al (1999) Nonfasting plasma total homocysteine levels and all cause and cardiovascular disease mortality in elderly Framingham men and women. Arch Intern Med 159:1077–1080

    Google Scholar 

  2. Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62

    Google Scholar 

  3. Kalmjn S, Launer IJ, Lindermans J, Bots ML, Hofman A, Breteler MM (1999) Total homocysteine and cognitive decline in a community-based sample of elderly subjects: the Rotterdam study. Am J Epidemol 150:283–389

    Google Scholar 

  4. Morris MS (2003) Homocysteine and Alzheimer’s disease. Lancet Neurol 2:425–428

    Article  PubMed  CAS  Google Scholar 

  5. Van Dam F, Van Gool WA (2009) Hyperhomocysteinemia and Alzheimer’s disease: a systematic review. Arch Gerontol Geriatr 48:425–430

    Google Scholar 

  6. Kamath AF, Chauhan AK, Kisuka J, Dole VS, Loscalzo J, Handy DE, Wagner DD (2006) Elevated levels of homocysteine compromise blood–brain barrier integrity in mice. Blood 107:591–593

    Google Scholar 

  7. Mudher A, Lovestone S (2002) Alzheimer’s disease—do tauists and Baptists shake hand? Trends Neurosci 25:22–26

    Article  PubMed  CAS  Google Scholar 

  8. Matthias D, Becker CH, Riezler R, Kindling PH (1996) Homocysteine induced atherosclerosis-like alterations of the aorta in normotensive and hypertensive rats following of high doses of methionine. Atherosclerosis 122:201–216

    Article  PubMed  CAS  Google Scholar 

  9. Tsai JC, Perrella MA, Yoshizumi M et al (1994) Promotion of vascular muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91:6369–6373

    Google Scholar 

  10. Durand P, Lussier-Cacan S, Blache D (1997) Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis and macrophage-derived tissue factor in rats. FASEB J 11:1157–1168

    PubMed  CAS  Google Scholar 

  11. Zhang RA, Ma M, Zhu H, Ling W (2004) Mild hyperhomocysteinemia induced by feeding rat diets in methionine or deficient folate promotes early atherosclerosis inflammatory processes. J Nutr 134:825–830

    Google Scholar 

  12. Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC et al (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the vitamin intervention for stroke prevention (VISP) randomized controlled trial. J Am Med Assoc 291:565–575

    Google Scholar 

  13. Lonne E, Yusuf S, Arnold MJ, Sheridan P, Pogue J et al (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354:1567–1577

    Article  Google Scholar 

  14. Bonna KH, Njolstad I. Ueland PM, Schimer H, Tverdal A et al (2006) Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 354:1578–1588

    Google Scholar 

  15. Bazzano LA, Reynolds K, Holder KN, He J (2006) Effect of folic acid supplementation on risk of cardiovascular disease. JAMA 296:720–726

    Google Scholar 

  16. Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group (2010) Effects of homocysteine lowering with folic acid plus vitamin B12 vs. placebo on mortality and major morbidity in myocardial survivors. A randomized trial. JAMA 303:486–494

    Google Scholar 

  17. Jamaluddin MD, Chen I, Yang F, Jiang X, Jan M, Schafer AI, Durante W, Yang X, Wang H (2007) Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene. Blood 110:3848–3855

    Google Scholar 

  18. Anello G, Gueant-Rodriguez P, Bosco N et al (2004) Homocysteine and methylenetetrahydrofolate reductase polymorphism in Alzheimer’s disease. NeuroReport 15:859–861

    Article  PubMed  CAS  Google Scholar 

  19. Miller JW (2000) Homocysteine, Alzheimer’s disease, and cognitive function. Nutrition 16:675–677

    Article  PubMed  CAS  Google Scholar 

  20. Dwyer BE, Raina AK, Perry G, Smith MA (2004) Homocysteine and Alzheimer’s disease: a modifiable risk? Free Radic Biol Med 36:1471–1475

    Google Scholar 

  21. Perna AF, Ingrosso D. De Santo N (2003) Homocysteine and oxidative stress. Amino Acids 25:409–412

    Google Scholar 

  22. Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342:697–699

    Article  PubMed  CAS  Google Scholar 

  23. Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein E type 2 allele for late-onset Alzheimer’s disease. Nat Gen 7:180–184

    Google Scholar 

  24. Mingawa H, Watanabe A, Akatsu H, Adachi K, Ohtsuka C, Terayama Y et al (2010) Homocysteine, another risk factor for Alzheimer disease impairs apolipoprotein E3 function. J Biol Chem 285:38382–38388

    Article  Google Scholar 

  25. Kruman II, Kumartavel TS, Lohani A et al (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 70:694–702

    Google Scholar 

  26. Zhang CE, Wei W, Liu YH, Peng JH, Tian Q, Liu GP et al (2009) Hyperhomocysteinemia increases β-amyloid by enhancing expression of γ-secretase on phosphorylation of amyloid precursor protein in rat brain. Am J Pathol 174:1481–1491

    Google Scholar 

  27. Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447

    Article  PubMed  CAS  Google Scholar 

  28. Mattson MP, Tomaselli HJ, Rydel RE (1993) Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res 621:35–49

    Google Scholar 

  29. Harada J, Sugimoto M (1999) Activation of caspase-3 in β-Amyloid induced apoptosis of cultured rat cortical neurons. Brain Res 842:311–323

    Article  PubMed  CAS  Google Scholar 

  30. Busciglio J, Lorenzo A, Yeh J, Yanker BA (1995) β-amyloid fibrils induce tau phosphorylation and loss of mitochondrial binding. Neuron 14:879–888

    Article  PubMed  CAS  Google Scholar 

  31. Wang X, Su B, Siedlak SL, Moreira PI, Fujoka H, Wang Y et al (2008) Amyloid-β over-production causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323

    Article  PubMed  CAS  Google Scholar 

  32. Nprins ND, den Heijer T, Hofman A, Koudstaal PJ, Clarke R et al (2002) Homocysteine and cognitive function in the elderly. The Rotterdam Scan Study. Neurology 59:1375–1380

    Google Scholar 

  33. Budge M, Johnson C, Hogenvost E, de Jeger C, Milkain E, Ieveran SD, Barnetson C et al (2000) Plasma total homocysteine and cognitive performance in a volunteer elderly population. Ann NY Acad Sci 903:407–410

    Google Scholar 

  34. Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, Smith AD (2010) Homocysteine as predictor of cognitive decline in Alzheimer disease. Int J Geriatr Psychiatry 25:82–90

    PubMed  Google Scholar 

  35. Almeida CC, Brentani HP, Forlenza OV, Diniz BS (2012) Serum folic acid is reduced in patients with Alzheimer’s disease. Rev Psiquiatr Clin 39:90–93

    Google Scholar 

  36. Wang HX, Wahlin A, Basun H, Fastbom J, Winblad B, Fratiglioni I (2001) Vitamin B12 and folate in relation to the development of Alzheimer’s disease. Neurology 56:1188–1194

    Google Scholar 

  37. Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, Brunetti N et al (2005) Homocysteine and folate as risk factors for dementia and Alzheimer’s disease. Am J Clin Nutr 82:636–643

    PubMed  CAS  Google Scholar 

  38. Nicolia V, Fuso A, Cavallaro RA, Di Luzio A, Scarpa S (2010) B vitamin deficiency promotes tau phosphorylation through regulation of GSK 3-beta and PP2A. J Alzheimer Dis 19:895–907

    Google Scholar 

  39. Yu NK, Back SH, Kaang BK (2011) DNA methylation-mediated control of learning and memory. Mol Brain 4:5

    Google Scholar 

  40. Jung AY, Smulders Y, Verhoef P, Kok FJ, Blom H, Kok RM, Kampman E, Durga J (2011) No effect of folic acid in men and women with moderately elevated homocysteine. PLoS One 6:e24976. doi:10.1371/journal.pone.0024976

  41. Durga J, van Boxel MP, Schouten EG, Kok FJ, Jolles J et al (2007) Effect of 3-years folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomized, double blind, controlled trial. Lancet 369:208–216

    Article  PubMed  CAS  Google Scholar 

  42. Mc Mahon JA, Green TJ, Skeaff CM, Knight RG, Mann JL et al (2006) A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med 354:2764–2772

    Google Scholar 

  43. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G et al (2010) Homocysteine-lowering by vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 5:212244. doi:10.1371/journal.pone.0012244

  44. Mirashi EH et al (2003) Plasma total homocysteine levels, dietary vitamin B6 and folate intake in AD and healthy aging. J Nutr Health Aging 7:160–165

    Google Scholar 

  45. Serot JM, Barbè F, Arming E, Bottiglieri T, Frank P, Montoghe P, Nicolas P (2005) Homocysteine and methylmalonic acid concentration in cerebro-spinal fluid: relation with age and Alzheimer’s disease. J Neurosurg Psychiatry 76:1585–1587

    Google Scholar 

  46. Fuso A, Nicolia RA, Cavallaro L, Ricceri F, D’Anselmi P, Coluccia G, Calamandrei G, Scarpa S (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine depletes brain S-adenosylmethionine and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 37:731–746

    Google Scholar 

  47. Ujiie M, Dickstein DL, Carlow DA, Jeffries WA (2003) Blood–brain-barrier permeability precedes senile plaques formation in an Alzheimer disease model. Microcirculation 10:463–470

    PubMed  CAS  Google Scholar 

  48. Arshavasky YI (2010) Why Alzheimer’s disease starts with a memory impairment: neurophysiological insight. J Alzheimer Dis 20:5–16

    Google Scholar 

  49. Tchantchou F, Graves M, Falcone D, Shea TB (2008) S-adenosyl methionine mediates glutathione efficacy by increasing glutathione S-transferase activity: implications for S-adenosylmethionine as a neuroprotective dietary activity supplement. J Alzheimer Dis 14:323–328

    Google Scholar 

  50. Boldyvrev AA, Johnson P (2007) Homocysteine and its derivatives as possible modulators of neuronal and non-neuronal cell glutamate receptors in Alzheimer’s disease. J Alzheimer Dis 11:219–228

    Google Scholar 

  51. den Heijer T et al (2003) Homocysteine and brain atrophy on MRI of non-demanded elderly. Brain 126:170–175

    Article  Google Scholar 

  52. Williams JH et al (2002) Minimal hippocampal width relates to plasma homocysteine in community-dwelling older people. Age Aging 31:440–444

    Article  Google Scholar 

  53. Kim SR et al (2009) Plasma total homocysteine levels are not associated with medial temporal lobe atrophy, but with white matter changes in Alzheimer’s disease. J Clin Neurol 5:85–90

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Cacciapuoti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacciapuoti, F. Lowering homocysteine levels with folic acid and B-vitamins do not reduce early atherosclerosis, but could interfere with cognitive decline and Alzheimer’s disease. J Thromb Thrombolysis 36, 258–262 (2013). https://doi.org/10.1007/s11239-012-0856-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0856-x

Keywords

Navigation