Skip to main content

Advertisement

Log in

Ultrasound-assisted thrombolysis with streptokinase improves thrombus resolution with minimal distal embolisation

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Catheter-directed ultrasound (US) has a synergistic effect on thrombus with streptokinase (SK). We aimed to assess whether a new method of arterial thrombolysis based on a combination of short-term US and intravenous SK administration can improve efficacy and minimize distal embolisation as compared to these two interventions applied separately. Experiments have been done on 23 mongrel dogs with ligature-induced femoral thrombosis divided into groups treated with (i) enzymatic thrombolysis (intravenous SK, n = 6), (ii) 36 kHz US-assisted thrombolysis (n = 6), (iii) US+SK applied together (n = 6), and (iv) control group with no treatment (n = 5). US intensity at the distal end of the waveguide was 10–15 W/cm2. Selective angiography, plethysmography and sphygmography have been used to assess thrombus resolution and distal embolisation. US-assisted thrombolysis alone was associated with good thrombus resolution, but substantial distal embolisation. SK-induced fibrinolysis alone did not provoke distal embolization but showed delayed thrombus resolution compared to US-treated group. Dual US+SK therapy resulted in high rate of US destruction without significant Under the combined US+SK action, nearly additive summation of US cavitation and SK effects as well as synergistic effects of both these factors on hemostasis parameters (activated partial thromboplastin, prothrombin, and thrombin time; fibrinogen, FDP, D-dimers, antithrombin III, plasminogen, and α2-antiplasmin) have been observed. Combination of CK and US-induced thrombolysis shows high efficacy with minimal distal embolisation. Arterial thrombus destruction by the combination of gradual (40 min) SK intravenous administration followed by short-time (1.5 min) intense US exposure improves shows positive effect of parameters of haemostasis. The magnitude and clinical significance of possible adverse effects of the dual fibrinolytic intervention related to endothelial injury and risk of bleeding needs to be further assessed in longer-term experiments and appropriately designed clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luo H, Steffen W, Cercek B, Arunasalam S, Maurer G, Siegel RJ (1993) Enhancement of thrombolysis by external ultrasound. Am Heart J 125(6):1564–1569

    Article  PubMed  CAS  Google Scholar 

  2. Olsson SB, Johansson B, Nilsson AM, Olsson C, Roijer A (1994) Enhancement of thrombolysis by ultrasound. Ultrasound Med Biol 20(4):375–382

    Article  PubMed  CAS  Google Scholar 

  3. Hardig BM, Carlson J, Roijer A (2008) Changes in clot lysis levels of reteplase and streptokinase following continuous wave ultrasound exposure, at ultrasound intensities following attenuation from the skull bone. BMC Cardiovasc Disord 8:19

    Article  PubMed  Google Scholar 

  4. Francis CW, Blinc A, Lee S, Cox C (1995) Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 21(3):419–424

    Article  PubMed  CAS  Google Scholar 

  5. Suchkova V, Carstensen EL, Francis CW (2002) Ultrasound enhancement of fibrinolysis at frequencies of 27−100 kHz. Ultrasound Med Biol 28(3):377–382

    Article  PubMed  Google Scholar 

  6. Suchkova VN, Baggs RB, Francis CW (2000) Effect of 40 kHz ultrasound on acute thrombotic ischemia in a rabbit femoral artery thrombosis model: enhancement of thrombolysis and improvement in capillary muscle perfusion. Circulation 101(19):2296–2301

    Article  PubMed  CAS  Google Scholar 

  7. Luo H, Nishioka T, Fishbein MC, Cercek B, Forrester JS, Kim CJ, Berglund H, Siegel RJ (1996) Transcutaneous ultrasound augments lysis of arterial thrombi in vivo. Circulation 94(4):775–778

    Article  PubMed  CAS  Google Scholar 

  8. Larsson J, Carlson J, Olsson SB (1998) Ultrasound enhanced thrombolysis in experimental retinal vein occlusion in the rabbit. Br J Ophthalmol 82(12):1438–1440

    Article  PubMed  CAS  Google Scholar 

  9. Molina CA, Barreto AD, Tsivgoulis G, Sierzenski P, Malkoff MD, Rubiera M, Gonzales N, Mikulik R, Pate G, Ostrem J, Singleton W, Manvelian G, Unger EC, Grotta JC, Schellinger PD, Alexandrov AV (2009) Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial. Ann Neurol 66(1):28–38. doi:10.1002/ana.21723

    Article  PubMed  CAS  Google Scholar 

  10. Hudson M, Greenbaum A, Brenton L, Gibson CM, Siegel R, Reeves LR, Sala MF, McKendall G, Bluguermann J, Echt D, Ohman EM, Weaver WD (2010) Adjunctive transcutaneous ultrasound with thrombolysis: results of the PLUS (Perfusion by ThromboLytic and UltraSound) trial. JACC Cardiovasc Interv 3(3):352–359

    Article  PubMed  Google Scholar 

  11. Nilsson AM, Odselius R, Roijer A, Olsson SB (1995) Pro- and antifibrinolytic effects of ultrasound on streptokinase-induced thrombolysis. Ultrasound Med Biol 21(6):833–840

    Article  PubMed  CAS  Google Scholar 

  12. Hardig BM, Persson HW, Olsson SB (2006) Low-energy ultrasound exposure of the streptokinase molecule may enhance but also attenuate its fibrinolytic properties. Thromb Res 117(6):713–720

    Article  PubMed  Google Scholar 

  13. Blinc A, Francis CW, Trudnowski JL, Carstensen EL (1993) Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood 81(10):2636–2643

    PubMed  CAS  Google Scholar 

  14. Akiyama M, Ishibashi T, Yamada T, Furuhata H (1998) Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro. Neurosurgery 43(4):828–832 discussion 832−823

    Article  PubMed  CAS  Google Scholar 

  15. Francis CW, Onundarson PT, Carstensen EL, Blinc A, Meltzer RS, Schwarz K, Marder VJ (1992) Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 90(5):2063–2068. doi:10.1172/JCI116088

    Article  PubMed  CAS  Google Scholar 

  16. Mewissen MW, Seabrook GR, Meissner MH, Cynamon J, Labropoulos N, Haughton SH (1999) Catheter-directed thrombolysis for lower extremity deep venous thrombosis: report of a national multicenter registry. Radiology 211(1):39–49

    PubMed  CAS  Google Scholar 

  17. Bor-Seng-Shu E, Nogueira Rde C, Figueiredo EG, Evaristo EF, Conforto AB, Teixeira MJ (2012) Sonothrombolysis for acute ischemic stroke: a systematic review of randomized controlled trials. Neurosurg Focus 32(1):E5. doi:10.3171/2011.10.FOCUS11251

    Article  PubMed  Google Scholar 

  18. Tsivgoulis G, Eggers J, Ribo M, Perren F, Saqqur M, Rubiera M, Sergentanis TN, Vadikolias K, Larrue V, Molina CA, Alexandrov AV (2010) Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke 41(2):280–287

    Article  PubMed  Google Scholar 

  19. Behrens S, Spengos K, Daffertshofer M, Schroeck H, Dempfle CE, Hennerici M (2001) Transcranial ultrasound-improved thrombolysis: diagnostic vs. therapeutic ultrasound. Ultrasound Med Biol 27(12):1683–1689

    Article  PubMed  CAS  Google Scholar 

  20. Hong AS, Chae JS, Dubin SB, Lee S, Fishbein MC, Siegel RJ (1990) Ultrasonic clot disruption: an in vitro study. Am Heart J 120(2):418–422

    Article  PubMed  CAS  Google Scholar 

  21. Everbach EC, Francis CW (2000) Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 26(7):1153–1160

    Article  PubMed  CAS  Google Scholar 

  22. Datta S, Coussios CC, McAdory LE, Tan J, Porter T, De Courten-Myers G, Holland CK (2006) Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 32(8):1257–1267

    Article  PubMed  Google Scholar 

  23. Datta S, Coussios CC, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK (2008) Ultrasound-enhanced thrombolysis using definity as a cavitation nucleation agent. Ultrasound Med Biol 34(9):1421–1433

    Article  PubMed  Google Scholar 

  24. Adzerikho IE, Mrochek AG, Dmitriev VV, Lukyanchenko OA, Kulak AI (2001) Ultrasound fibrin clot destruction in vitro in the presence of fibrinolytic agent. Ultrason Sonochem 8(3):315–318

    Article  PubMed  CAS  Google Scholar 

  25. Adzerikho IE, Mrochek AG, Minchenya VT, Dmitriev VV, Kulak AI (2011) Combined low-frequency ultrasound and streptokinase intravascular destruction of arterial thrombi in vivo. Ultrasound Med Biol 37(10):1644–1652

    Article  PubMed  Google Scholar 

  26. Adzerikho IE (2004) Ultrasound thrombolysis in the treatment of arterial thrombosis: experimental−clinical study. Dissertation State Higher Educational Establishment, Belarusian Medical Academy of Post-Graduate Education, Minsk

    Google Scholar 

  27. Cherniavsky EA, Strakha IS, Adzerikho IE, Shkumatov VM (2011) Effects of low-frequency ultrasound on some properties of fibrinogen and its plasminolysis. BMC Biochem 12:60

    Article  PubMed  CAS  Google Scholar 

  28. Shkumatov VM, Adzerikho IE, Lesnikovich JA, Cherniavsky EA (2004) Effect of ultrasound on structure and functional properties of antithrombin III and proteins of PPSB complex. Biochemistry (Moscow) 69(2):195–200

    Article  CAS  Google Scholar 

  29. Ciuti P, Dezhkunov NV, Francescutto A, Kulak AI, Iernetti G (2000) Cavitation activity stimulation by low-frequency field pulses. Ultrason Sonochem 7(4):213–216

    Article  PubMed  CAS  Google Scholar 

  30. Rosenschein U, Roth A, Rassin T, Basan S, Laniado S, Miller HI (1997) Analysis of coronary ultrasound thrombolysis endpoints in acute myocardial infarction (ACUTE trial) Results of the feasibility phase. Circulation 95(6):1411–1416

    Article  PubMed  CAS  Google Scholar 

  31. Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93(5):879–888

    Article  PubMed  CAS  Google Scholar 

  32. Ratnoff OD, Menzie C (1951) A new method for the determination of fibrinogen in small samples of plasma. J Lab Clin Med 37(2):316–320

    PubMed  CAS  Google Scholar 

  33. Devcic-Kuhar B, Pfaffenberger S, Gherardini L, Mayer C, Groschl M, Kaun C, Benes E, Tschachler E, Huber K, Maurer G, Wojta J, Gottsauner-Wolf M (2004) Ultrasound affects distribution of plasminogen and tissue-type plasminogen activator in whole blood clots in vitro. Thromb Haemost 92(5):980–985. doi:10.1267/THRO04050980

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. V. Dmitriev for helpful discussion and to Dr. A.I. Savchuk for assistance with analysis of angiograms. We are also indebted to Mr. A. Stakheiko for assistance with the mathematical calculations and preparing graphical illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Shantsila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adzerikho, I., Shantsila, E., Minchenya, V. et al. Ultrasound-assisted thrombolysis with streptokinase improves thrombus resolution with minimal distal embolisation. J Thromb Thrombolysis 36, 263–270 (2013). https://doi.org/10.1007/s11239-012-0850-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0850-3

Keywords

Navigation