Skip to main content
Log in

Biomarkers of deep venous thrombosis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Deep venous thrombosis (DVT), which is associated with pulmonary embolism, is a fatal disease because of its high morbidity and mortality in outpatients and inpatients, especially in hospitalized patients. At the same time, lack of subjective clinical symptoms and objective clinical signs makes the diagnosis complicated. Historically, the primarily imaging modalities, including duplex ultrasound, helical CT scans, and venography, establish the diagnosis of DVT. Currently, both imaging modalities and serology are utilized. These plasma molecules are regarded as the biomarkers of DVT including D-dimer, P-selectin, Factor VIII, thrombin generation, inflammatory cytokines, microparticles, fibrin monomer, leukocyte count and so on. This brief review is used to analyze the contribution of the biomarkers to diagnosis and guidance of therapy for DVT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Virchow R (1856) Gesammelte Abhandlungen zur Wissenschaftlichen Medizin. A M Von Meidinger Sohn, Frankfurt, p 525–530

  2. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9(6):263–268

    Article  PubMed  CAS  Google Scholar 

  3. McEver RP (2001) Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 86(3):746–756

    PubMed  CAS  Google Scholar 

  4. Geng JG, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP (1990) Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343(6260):757–760

    Article  PubMed  CAS  Google Scholar 

  5. Moore KL, Stults NL, Diaz S, Smith DF, Cummings RD, Varki A, McEver RP (1992) Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol 118(2):445–456

    Article  PubMed  CAS  Google Scholar 

  6. Furie B, Furie BC (2004) Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 10(4):171–178

    Article  PubMed  CAS  Google Scholar 

  7. Sako D, Chang XJ, Barone KM, Vachino G, White HM, Shaw G, Veldman GM, Bean KM, Ahern TJ, Furie B, Cumming DA, Larsen GR (1993) Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75(6):1179–1186

    Article  PubMed  CAS  Google Scholar 

  8. Théorêt JF, Yacoub D, Hachem A, Gillis MA, Merhi Y (2011) P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation. Thromb Res 128(3):243–250

    Article  PubMed  CAS  Google Scholar 

  9. Palabrica T, Lobb R, Furie BC, Aronovitz M, Benjamin C, Hsu YM, Sajer SA, Furie B (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359(6398):848–851

    Article  PubMed  CAS  Google Scholar 

  10. Miszti-Blasius K, Debreceni IB, Felszeghy S, Dezso B, Kappelmayer J (2011) Lack of P-selectin glycoprotein ligand-1 protects mice from thrombosis after collagen/epinephrine challenge. Thromb Res 127(3):228–234

    Article  PubMed  CAS  Google Scholar 

  11. Ramacciotti E, Myers DD Jr, Wrobleski SK, Deatrick KB, Londy FJ, Rectenwald JE, Henke PK, Schaub RG, Wakefield TW (2010) P-selectin/PSGL-1 Inhibitors versus enoxaparin in the resolution of venous thrombosis: a meta-analysis. Thromb Res 125(4):138–142

    Article  CAS  Google Scholar 

  12. Hrachovinová I, Cambien B, Hafezi-Moghadam A, Kappelmayer J, Camphausen RT, Widom A, Xia L, Kazazian HH Jr, Schaub RG, McEver RP, Wagner DD (2003) Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 9(8):1020–1025

    Article  PubMed  CAS  Google Scholar 

  13. Rauch U, Bonderman D, Bohrmann B, Badimon JJ, Himber J, Riederer MA, Nemerson Y (2000) Transfer of TF from leukocytes to platelets is mediated by CD15 and TF. Blood 96(1):170–175

    PubMed  CAS  Google Scholar 

  14. Rectenwald JE, Myers DD Jr, Hawley AE, Longo C, Henke PK, Guire KE, Schmaier AH, Wakefield TW (2005) D-dimer, P-selectin, and microparticles: novel markers to predict deep venous thrombosis. A pilot study. Thromb Haemost 94(6):1312–1317

    PubMed  CAS  Google Scholar 

  15. Ramacciotti E, Blackburn S, Hawley AE, Vandy F, Ballard-Lipka N, Stabler C, Baker N, Guire KE, Rectenwald JE, Henke PK, Myers DD Jr, Wakefield TW (2011) Evaluation of soluble P-selectin as a marker for the diagnosis of deep venous thrombosis. Clin Appl Thromb Hemost 17(4):425–431

    Article  PubMed  CAS  Google Scholar 

  16. Lee DS, Larson MG, Lunetta KL, Dupuis J, Rong J, Keaney JF Jr, Lipinska I, Baldwin CT, Vasan RS, Benjamin EJ (2008) Clinical and genetic correlates of soluble P-selectin in the community. J Thromb Haemost 6(1):20–31

    Article  PubMed  CAS  Google Scholar 

  17. Ay C, Jungbauer LV, Sailer T, Tengler T, Koder S, Kaider A, Panzer S, Quehenberger P, Pabinger I, Mannhalter C (2007) High concentrations of soluble P-selectin are associated with risk of venous thromboembolism and the P-selectin Thr715 variant. Clin Chem 53(7):1235–1243

    Article  PubMed  CAS  Google Scholar 

  18. de Uitte Willige S, De Visser MC, Vos HL, Houwing-Duistermaat JJ, Rosendaal FR, Bertina RM (2008) Selectin haplotypes and the risk of venous thrombosis: influence of linkage disequilibrium with the factor V Leiden mutation. J Thromb Haemost 6(3):478–485

    Article  CAS  Google Scholar 

  19. Undas A, Tracz W, Siudak Z (2009) Thr715Pro P-selectin polymorphism and P-selectin release in blood obtained from the bleeding time wounds in patients with deep-vein thrombosis. Thromb Res 124(2):248–250

    Article  PubMed  CAS  Google Scholar 

  20. Adam SS, Key NS, Greenberg CS (2009) D-dimer antigen: current concepts and future prospects. Blood 113(13):2878–2887

    Article  PubMed  CAS  Google Scholar 

  21. Khaira HS, Mann J (1998) Plasma D-dimer measurements in patients with suspected DVT—a means of avoiding unnecessary venography. Eur J Vasc Endovasc Surg 15(3):235–238

    Article  PubMed  CAS  Google Scholar 

  22. Castro D, Pérez-Rodríguez E, Montaner L, Flores J, Neuvo GD (2001) Diagnostic value of D dimer in pulmonary embolism and pneumonia. Respiration 68(4):371–375

    Article  PubMed  CAS  Google Scholar 

  23. Perrier A (2004) D-dimer for suspected pulmonary embolism: whom should we test? Chest 125(3):807–809

    Article  PubMed  Google Scholar 

  24. Mountain D, Jacobs I, Haig A (2007) The VIDAS D-dimer test for venous thromboembolism: a prospective surveillance study shows maintenance of sensitivity and specificity when used in normal clinical practice. Am J Emerg Med 25(4):464–471

    Article  PubMed  Google Scholar 

  25. Ho CH (2011) Can very high level of D-dimer exclusively predict the presence of thromboembolic diseases? J Chin Med Assoc 74(4):151–154

    Article  PubMed  CAS  Google Scholar 

  26. Bozic M, Blinc A, Stegnar M (2002) D-dimer, other markers of haemostasis activation and soluble adhesion molecules in patients with different clinical probabilities of deep vein thrombosis. Thromb Res 108(2–3):107–114

    Article  PubMed  CAS  Google Scholar 

  27. Sohne M, Kruip MJ, Nijkeuter M, Tick L, Kwakkel H, Halkes SJ, Huisman MV, Buller HR (2006) Accuracy of clinical decision rule, D-dimer and spiral computed tomography in patients with malignancy, previous venous thromboembolism, COPD or heart failure and in older patients with suspected pulmonary embolism. J Thromb Haemost 4(5):1042–1046

    Article  PubMed  CAS  Google Scholar 

  28. Douma RA, le Gal G, Söhne M, Righini M, Kamphuisen PW, Perrier A, Kruip MJ, Bounameaux H, Büller HR, Roy PM (2010) Potential of an age adjusted D-dimer cut-off value to improve the exclusion of pulmonary embolism in older patients: a retrospective analysis of three large cohorts. BMJ 340:c1475

    Article  PubMed  Google Scholar 

  29. Anderson DR, Kovacs MJ, Kovacs G, Stiell I, Mitchell M, Khoury V, Dreyer J, Ward J, Wells PS (2003) Combined use of clinical assessment and D-dimer to improve the management of patients presenting to the emergency department with suspected deep vein thrombosis (the EDITED Study). J Thromb Haemost 1(3):645–651

    Article  PubMed  CAS  Google Scholar 

  30. Wells PS, Anderson DR, Rodger M, Forgie M, Kearon C, Dreyer J, Kovacs G, Mitchell M, Lewandowski B, Kovacs MJ (2003) Evaluation of D-dimer in the diagnosis of suspected deep vein thrombosis. N Engl J Med 349(13):1227–1235

    Article  PubMed  CAS  Google Scholar 

  31. Hirai LK, Takahashi JM, Yoon HC (2007) A prospective evaluation of a quantitative assay in the evaluation of acute pulmonary embolism. J Vasc Interv Radiol 18(8):970–974

    Article  PubMed  Google Scholar 

  32. Gimber LH, Travis RI, Takahashi JM, Goodman TL, Yoon HC (2009) Computed tomography angiography in patients evaluated for acute pulmonary embolism with low serum D-dimer levels: a prospective study. Perm J 13(4):4–10

    PubMed  Google Scholar 

  33. Hurwitz LM, Reiman RE, Yoshizumi TT, Goodman PC, Toncheva G, Nguyen G, Lowry (2007) Radiation dose from contemporary cardiothoracic multidetector CT protocols with an anthropomorphic female phantom: implications for cancer induction. Radiology 245(3):742–750

    Article  PubMed  Google Scholar 

  34. Lufft V, Hoogestraat-Lufft L, Fels LM, Egbeyong-Baiyee D, Tusch G, Galanski M, Olbricht CJ (2002) Contrast media nephropathy: intravenous CT angiography versus intraarterial digital subtraction angiography in renal artery stenosis: a prospective randomized trial. Am J Kidney Dis 40(2):236–242

    Article  PubMed  Google Scholar 

  35. Ost D, Khanna D, Shah R, Hall CS, Shah S, Lesser M, Fein AM (2004) Impact of spiral computed tomography on the diagnosis of pulmonary embolism in a community hospital setting. Respiration 71(5):450–457

    Article  PubMed  Google Scholar 

  36. Crowther MA, Cook DJ, Griffith LE, Meade M, Hanna S, Rabbat C, Bates SM, Geerts W, Johnston M, Guyatt G (2005) Neither baseline tests of molecular hypercoagulability nor D-dimer levels predict deep venous thrombosis in critically ill medical-surgical patients. Intensive Care Med 31(1):48–55

    Article  PubMed  CAS  Google Scholar 

  37. Palareti G, Cosmi B, Legnani C, Tosetto A, Brusi C, Iorio A, Pengo V, Ghirarduzzi A, Pattacini C, Testa S, Lensing AW, Tripodi A (2006) D-dimer testing to determine the duration of anticoagulation therapy. N Engl J Med 335(17):1780–1789

    Article  Google Scholar 

  38. Cosmi B, Legnani C, Tosetto A, Pengo V, Ghirarduzzi A, Testa S, Prisco D, Poli D, Tripodi A, Marongiu F, Palareti G (2010) Usefulness of repeated D-dimer testing after stopping anticoagulation for a first episode of unprovoked venous thromboembolism: the PROLONG II prospective study. Blood 115(3):481–488

    Article  PubMed  CAS  Google Scholar 

  39. Becattini C, Lignani A, Masotti L, Forte MB, Agnelli G (2012) D-dimer for risk stratification in patients with acute pulmonary embolism. J Thromb Thrombolysis 33(1):48–57

    Article  PubMed  Google Scholar 

  40. O’Donnell J, Tuddenham EG, Manning R, Kemball-Cook G, Johnson D, Laffan M (1997) High prevalence of elevated factor VIII levels in patients referred for thrombophilia screening: role of increased synthesis and relationship to the acute phase reaction. Thromb Haemost 77(5):825–828

    PubMed  Google Scholar 

  41. Tanaka KA, Key NS, Levy JH (2009) Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 108(5):1433–1446

    Article  PubMed  CAS  Google Scholar 

  42. Ota S, Yamada N, Ogihara Y, Tsuji A, Ishikura K, Nakamura M, Wada H, Ito M (2011) High plasma level of factor VIII: an important risk factor for venous thromboembolism. Circ J 75(6):1472–1475

    Article  PubMed  CAS  Google Scholar 

  43. Koster T, Blann AD, Briet E, Vandenbroucke JP, Rosendaal FR (1995) Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 345(8943):152–155

    Article  PubMed  CAS  Google Scholar 

  44. Kraaijenhagen RA, in’t Anker PS, Koopman MM, Reitsma PH, Prins MH, van den Ende A, Büller HR (2000) High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism. Thromb Haemost 83(1):5–9

    PubMed  CAS  Google Scholar 

  45. Kyrle PA, Minar E, Hirschl M, Bialonczyk C, Stain M, Schneider B, Weltermann A, Speiser W, Lechner K, Eichinger S (2000) High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 343(7):457–462

    Article  PubMed  CAS  Google Scholar 

  46. O’Donnell J, Mumford AD, Manning RA, Laffan M (2000) Elevation of FVIII: C in venous thromboembolism is persistent and independent of the acute phase reaction. Thromb Haemost 83(1):10–13

    PubMed  Google Scholar 

  47. Tichelaar V, Mulder A, Kluin-Nelemans H, Meijer K (2012) The acute phase reaction explains only a part of initially elevated factor VIII:C levels: a prospective cohort study in patients with venous thrombosis. Thromb Res 129(2):183–186

    Article  PubMed  CAS  Google Scholar 

  48. Soria JM, Almasy L, Souto JC, Buil A, Martinez-Sanchez E, Mateo J, Borrell M, Stone WH, Lathrop M, Fontcuberta J, Blangero J (2003) A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood 101(1):163–167

    Article  PubMed  CAS  Google Scholar 

  49. Viel KR, Machiah DK, Warren DM, Khachidze M, Buil A, Fernstrom K, Souto JC, Peralta JM, Smith T, Blangero J, Porter S, Warren ST, Fontcuberta J, Soria JM, Flanders WD, Almasy L, Howard TE (2007) A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels. Blood 109(9):3713–3724

    Article  PubMed  CAS  Google Scholar 

  50. Singh I, Smith A, Vanzieleghem B, Collen D, Burnand K, Saint-Remy JM, Jacquemin M (2002) Antithrombotic effects of controlled inhibition of factor VIII with a partially inhibitory human monoclonal antibody in a murine vena cava thrombosis model. Blood 99(9):3235–3240

    Article  PubMed  CAS  Google Scholar 

  51. Emmerechts J, Vanassche T, Loyen S, Van Linthout I, Cludts K, Kauskot A, Long C, Jacquemin M, Hoylaerts MF, Verhamme P (2011) Partial versus complete factor VIII inhibition in a mouse model of venous thrombosis. Thromb Res. doi:10.1016/j.thromres.2011.06.027

    Google Scholar 

  52. Macfarlane RG, Biggs R (1953) A thrombin generation test: the application in haemophilia and thrombocytopenia. J Clin Pathol 6(1):3–8

    Article  PubMed  CAS  Google Scholar 

  53. Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, Lecompte T, Béguin S (2003) Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 33(1):4–15

    Article  PubMed  CAS  Google Scholar 

  54. Van Veen JJ, Gatt A, Makris M (2008) Thrombin generation testing in routine clinical practice: are we there yet? Br J Haematol 142(6):889–903

    Article  PubMed  Google Scholar 

  55. Brummel-Ziedins KE, Vossen CY, Butenas S, Mann KG, Rosendaal FR (2005) Thrombin generation profiles in deep venous thrombosis. J Thromb Haemost 3(11):2497–2505

    Article  PubMed  CAS  Google Scholar 

  56. Dargaud Y, Béguin S, Lienhart A, Al Dieri R, Trzeciak C, Bordet JC, Hemker HC, Negrier C (2005) Evaluation of thrombin generating capacity in plasma from patients with haemophilia A and B. Thromb Haemost 93(3):475–480

    PubMed  CAS  Google Scholar 

  57. Ryland JK, Lawrie AS, Mackie IJ, Machin SJ (2011) Persistent high factor VIII activity leading to increased thrombin generation—a prospective cohort study. Thromb Res. doi:10.1016/j.thromres.2011.07.020

    PubMed  Google Scholar 

  58. Hron G, Kollars M, Binder BR, Eichinger S, Kyrle PA (2006) Identification of patients at low risk for recurrent venous thromboembolism by measuring thrombin generation. JAMA 296(4):397–402

    Article  PubMed  CAS  Google Scholar 

  59. Lutsey PL, Folsom AR, Heckbert SR, Cushman M (2009) Peak thrombin generation and subsequent venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE) study. J Thromb Haemost 7(10):1639–1648

    Article  PubMed  CAS  Google Scholar 

  60. van Hylckama VliegA, Christiansen SC, Luddington R, Cannegieter SC, Rosendaal FR, Baglin TP (2007) Elevated endogenous thrombin potential is associated with an increased risk of a first deep venous thrombosis but not with the risk of recurrence. Br J Haematol 138(6):769–774

    Article  Google Scholar 

  61. Segers O, van Oerle R, ten Cate H, Rosing J, Castoldi E (2010) Thrombin generation as an intermediate phenotype for venous thrombosis. Thromb Haemost 103(1):114–122

    Article  PubMed  CAS  Google Scholar 

  62. Haas FJ, Schutgens RE, Kluft C, Biesma DH (2011) A thrombin generation assay may reduce the need for compression ultrasonography for the exclusion of deep venous thrombosis in the elderly. Scand J Clin Lab Invest 71(1):12–18

    Article  PubMed  Google Scholar 

  63. Osnes LT, Westvik AB, Joø GB, Okkenhaug C, Kierulf P (1996) Inhibition of IL-1 induced tissue factor (TF) synthesis and procoagulant activity (PCA) in purified human monocytes by IL-4, IL-10 and IL-13. Cytokine 8(11):822–827

    Article  PubMed  CAS  Google Scholar 

  64. Folsom AR, Lutsey PL, Astor BC, Cushman M (2009) C-reactive protein and venous thromboembolism. A prospective investigation in the ARIC cohort. Thromb Haemost 102(4):615–619

    PubMed  CAS  Google Scholar 

  65. Zacho J, Tybjaerg-Hansen A, Nordestgaard BG (2010) C-reactive protein and risk of venous thromboembolism in the general population. Arterioscler Thromb Vasc Biol 30(8):1672–1678

    Article  PubMed  CAS  Google Scholar 

  66. Tsai AW, Cushman M, Rosamond WD, Heckbert SR, Tracy RP, Aleksic N, Folsom AR (2002) Coagulation factors, inflammation markers, and venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). Am J Med 113(8):636–642

    Article  PubMed  Google Scholar 

  67. Thomas EA, Cobby MJ, Rhys Davies E, Jeans WD, Whicher JT (1989) Liquid crystal thermography and C reactive protein in the detection of deep venous thrombosis. BMJ 299(6705):951–952

    Article  PubMed  CAS  Google Scholar 

  68. Wong NA, Laitt RD, Goddard PR, Virjee J (1996) Serum C reactive protein does not reliably exclude lower limb deep venous thrombosis. Thromb Haemost 76(5):816–817

    PubMed  CAS  Google Scholar 

  69. Maskell NA, Butland RJ (2001) A normal serum CRP measurement does not exclude deep vein thrombosis. Thromb Haemos 86(6):1582–1583

    CAS  Google Scholar 

  70. Bucek RA, Reiter M, Quehenberger P, Minar E (2002) C-reactive protein in the diagnosis of deep vein thrombosis. Br J Haematol 119(2):385–389

    Article  PubMed  CAS  Google Scholar 

  71. Fox EA, Kahn SR (2005) The relationship between inflammation and venous thrombosis. A systematic review of clinical studies. Thromb Haemost 94(2):362–365

    PubMed  CAS  Google Scholar 

  72. Reitsma PH, Rosendaal FR (2004) Activation of innate immunity in patients with venous thrombosis: the Leiden Thrombophilia Study. J Thromb Haemost 2(4):619–622

    Article  PubMed  CAS  Google Scholar 

  73. Poredos P, Jezovnik MK (2011) In patients with idiopathic venous thrombosis, interleukin-10 is decreased and related to endothelial dysfunction. Heart Vessels 26(6):596–602

    Article  PubMed  Google Scholar 

  74. Vormittag R, Hsieh K, Kaider A, Minar E, Bialonczyk C, Hirschl M, Mannhalter C, Pabinger I (2006) Interleukin-6 and interleukin-6 promoter polymorphism (-174) G > C in patients with spontaneous venous thromboembolism. Thromb Haemost 95(5):802–806

    PubMed  CAS  Google Scholar 

  75. Christiansen SC, Naess IA, Cannegieter SC, Hammerstrøm J, Rosendaal FR, Reitsma PH (2006) Inflammatory cytokines as risk factors for a first venous thrombosis: a prospective population-based study. PLoS Med 3(8):e334

    Article  PubMed  CAS  Google Scholar 

  76. Beckers MM, Ruven HJ, Haas FJ, Doevendans PA, ten Cate H, Prins MH, Biesma DH (2010) Single nucleotide polymorphisms in inflammation-related genes are associated with venous thromboembolism. Eur J Intern Med 21(4):289–292

    Article  PubMed  CAS  Google Scholar 

  77. Zee RY, Glynn RJ, Cheng S, Steiner L, Rose L, Ridker PM (2009) An evaluation of candidate genes of inflammation and thrombosis in relation to the risk of venous thromboembolism: the Women’s Genome Health Study. Circ Cardiovasc Genet 2(1):57–62

    Article  PubMed  CAS  Google Scholar 

  78. Matos MF, Lourenço DM, Orikaza CM, Bajerl JA, Noguti MA, Morelli VM (2011) The role of IL-6, IL-8 and MCP-1 and their promoter polymorphisms IL-6-174GC, IL-8-251AT and MCP-1-2518AG in the risk of venous thromboembolism: a case-control study. Thromb Res 128(3):216–220

    Article  PubMed  CAS  Google Scholar 

  79. Downing LJ, Strieter RM, Kadell AM, Wilke CA, Austin JC, Hare BD, Burdick MD, Greenfield LJ, Wakefield TW (1998) IL-10 regulates thrombus-induced vein wall inflammation and thrombosis. J Immunol 161(3):1471–1476

    PubMed  CAS  Google Scholar 

  80. Rectenwald JE, Myers DD Jr, Hawley AE, Longo C, Henke PK, Guire KE, Schmaier AH, Wakefield TW (2005) D-Dimer, P-Selectin, and microparticles: novel markers to predict deep venous thrombosis. Thromb Haemost 94(6):1312–1317

    PubMed  CAS  Google Scholar 

  81. Key NS, Chantrathammachart P, Moody PW, Chang JY (2010) Membrane microparticles in VTE and cancer. Thromb Res 125:80–83

    Article  Google Scholar 

  82. Ahn YS (2005) Cell-drived microparticles: “Miniature envoys with many faces”. J Thromb Haemost 3(5):884–887

    Article  PubMed  CAS  Google Scholar 

  83. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287

    Article  PubMed  CAS  Google Scholar 

  84. Campello E, Spiezia L, Radu CM, Bulato C, Castelli M, Gavasso S, Simioni P (2011) Endothelial, platelet, and TF-bearing microparticles in canner patients with and without thromboembolism. Thromb Res 127(5):473–477

    Article  PubMed  CAS  Google Scholar 

  85. Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, Freyssinet JM (2006) Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26(12):2594–2604

    Article  PubMed  CAS  Google Scholar 

  86. Chirinos JA, Heresi GA, Velasquez H, Jy W, Jimenez JJ, Ahn E, Horstman LL, Soriano AO, Zambrano JP, Ahn YS (2005) Elevation of endothelial microparticles, platelets, and leucocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 45(9):1467–1471

    Article  PubMed  CAS  Google Scholar 

  87. Ghosh A, Li W, Febbraio M, Espinola RG, McCrae KR, Cockrell E, Silverstein RL (2008) Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest 118(5):1934–1943

    PubMed  CAS  Google Scholar 

  88. Hrachovinova I, Cambien B, Hafezi-Moghadam A, Kappelmayer J, Camphausen RT, Widom A, Xia L, Kazazian HH Jr, Schaub RG, McEver RP, Wagner DD (2003) Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 9(8):1020–1025

    Article  PubMed  CAS  Google Scholar 

  89. Ramacciotti E, Hawley AE, Farris DM, Ballard NE, Wrobleski SK, Myers DD Jr, Henke PK, Wakefield TW (2009) Leukocyte- and platelet-derived microparticles correlate with thrombus weight and TF activity in an experimental mouse model of venous thrombosis. Thromb Haemost 101(4):748–754

    PubMed  CAS  Google Scholar 

  90. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448

    Article  PubMed  CAS  Google Scholar 

  91. Reich CF III, Pisetsky DS (2009) The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Exp Cell Res 315(5):760–768

    Article  PubMed  CAS  Google Scholar 

  92. Fuster V (1994) Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90(4):2126–2146

    Article  PubMed  CAS  Google Scholar 

  93. Vogel G, Dempfle CE, Spannagel M, Leskopf W (1996) The value of quantitative fibrin monomer determination in the early diagnosis of postoperative deep vein thrombosis. Thromb Res 81(2):241–251

    Article  PubMed  CAS  Google Scholar 

  94. Reber G, Blanchard J, Bounameaux H, Hoffmeyer P, Miron MJ, Leyvraz PF, de Moerloose P (2000) Inability of serial fibrin monomer measurements to predict or exclude deep venous thrombosis in asymptomatic patients undergoing total knee arthroplasty. Blood Coagul Fibrinolysis 11(3):305–308

    PubMed  CAS  Google Scholar 

  95. Wada H, Sakuragawa N (2008) Are fibrin-related markers useful for the diagnosis of thrombosis? Semin Thromb Hemost 34(1):33–38

    Article  PubMed  CAS  Google Scholar 

  96. Dopsaj V, Bogavac-Stanojevic N, Vasic D, Vukosavljevic D, Martinovic J, Kotur-Stevuljevic J, Spasic S (2009) Excluding deep venous thrombosis in symptomatic outpatients: is fibrin monomer aid to D-dimer analysis? Blood Coagul Fibrinolysis 20(7):546–551

    Article  PubMed  Google Scholar 

  97. Park KJ, Kwon EH, Kim HJ, Kim SH (2011) Evaluation of the diagnostic performance of fibrin monomer in disseminated intravascular coagulation. Korean J Lab Med 31(3):143–147

    Article  PubMed  Google Scholar 

  98. Semeraro N, Biondi A, Lorenzet R, Locati D, Mantovani A, Donati MB (1983) Direct induction of TF synthesis by endotoxin in human macrophages from diverse anatomical sites. Immunology 50(4):529–535

    PubMed  CAS  Google Scholar 

  99. Schaub RG, Simmons CA, Koets MH, Romano PJ 2nd, Stewart GJ (1984) Early events in the formation of a venous thrombus following local trauma and stasis. Lab Invest 51(2):218–224

    PubMed  CAS  Google Scholar 

  100. Stoffel N, Rysler C, Buser A, Gratwohl A, Tsakiris DA, Stern M (2010) Leukocyte count and risk of thrombosis in patients undergoing haematopoietic stem cell transplantation or intensive chemotherapy. Thromb Haemost 103(6):1228–1232

    Article  PubMed  CAS  Google Scholar 

  101. Tefferi A, Gangat N, Wolanskyj A (2007) The interaction between leukocytosis and other risk factors for thrombosis in essential thrombocythemia. Blood 109(9):4105

    Article  PubMed  CAS  Google Scholar 

  102. Passamonti F, Rumi E, Arcaini L, Boveri E, Elena C, Pietra D, Boggi S, Astori C, Bernasconi P, Varettoni M, Brusamolino E, Pascutto C, Lazzarino M (2008) Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica 93(11):1645–1651

    Article  PubMed  Google Scholar 

  103. Passamonti F, Rumi E, Pascutto C, Cazzola M, Lazzarino M (2009) Increase in leukocyte count over time predicts thrombosis in patients with low-risk essential thrombocythemia. J Thromb Haemost 7(9):1587–1589

    Article  PubMed  CAS  Google Scholar 

  104. Hoch RC, Schraufstätter IU, Cochrane CG (1996) In vivo, in vitro, and molecular aspects of interleukin-8 and the interleukin-8 receptors. J Lab Clin Med 128(2):134–145

    Article  PubMed  CAS  Google Scholar 

  105. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338(7):436–445

    Article  PubMed  CAS  Google Scholar 

  106. Tait RC, Walker ID, Reitsma PH, Islam SI, McCall F, Poort SR, Conkie JA, Bertina RM (1995) Prevalence of protein C deficiency in the healthy population. Throm Haemost 73(1):87–93

    CAS  Google Scholar 

  107. Tait RC, Walker ID, Perry DJ, Islam SI, Daly ME, McCall F, Conkie JA, Carrell RW (1994) Prevalence of antithrombin deficiency in the healthy population. Br J Haematol 87(1):106–112

    Article  PubMed  CAS  Google Scholar 

  108. McColl M, Tait RC, Walker ID, Perry DJ, McCall F, Conkie JA (1996) Low thrombosis rate seen in blood donors and their relatives with inherited deficiencies of antithrombin and protein C: correlation with type of defect, family history, and absence of the factor V Leiden mutation. Blood Coagul Fibrinolysis 7(7):689–694

    Article  PubMed  CAS  Google Scholar 

  109. Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369(6475):64–67

    Article  PubMed  CAS  Google Scholar 

  110. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996) A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88(10):3698–3703

    PubMed  CAS  Google Scholar 

  111. Morelli VM, De Visser MC, Vos HL, Bertina RM, Rosendaal FR (2005) ABO blood group genotypes and the risk of venous thrombosis: effect of factor V Leiden. J Thromb Haemost 3(1):183–185

    Article  PubMed  CAS  Google Scholar 

  112. den Heijer M, Koster T, Blom HJ, Bos GM, Briet E, Reitsma PH, Vandenbroucke JP, Rosendaal FR (1996) Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 334(12):759–762

    Article  Google Scholar 

  113. Kyrle PA, Eichinger S (2005) Deep vein thrombosis. Lancet 365(9465):116–174

    Article  Google Scholar 

  114. Wells PS, Anderson DR, Bormanis J, Guy F, Mitchell M, Gray L, Clement C, Robinson KS, Lewandowski B (1997) Value of assessment of pretest probability of deep-vein thrombosis in clinical management. Lancet 350(9094):1795–1798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, H., Ge, Z., Ying, P. et al. Biomarkers of deep venous thrombosis. J Thromb Thrombolysis 34, 335–346 (2012). https://doi.org/10.1007/s11239-012-0721-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0721-y

Keywords

Navigation