Skip to main content
Log in

Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Objectives Alterations in the enzymes involved in homocysteine (Hcy) metabolism or vitamin deficiency could play a role in coronary artery disease (CAD) development. This study investigated the influence of MTHFR and MTR gene polymorphisms, plasma folate and MMA on Hcy concentrations and CAD development. MMA and folate concentrations were also investigated according to the polymorphisms. Methods Two hundred and eighty-three unrelated Caucasian individuals undergoing coronary angiography (175 with CAD and 108 non-CAD) were assessed in a case–control study. Plasma Hcy and MMA were measured by liquid chromatography/tandem mass spectrometry. Plasma folate was measured by competitive immunoassay. Dietary intake was evaluated using a nutritional questionnaire. Polymorphisms MTHFR and MTR were investigated by polymerase chain reaction (PCR) followed by enzyme digestion or allele-specific PCR. Results Hcy mean concentrations were higher in CAD patients compared to controls, but below statistical significance (P = 0.246). Increased MMA mean concentrations were frequently observed in the CAD group (P = 0.048). Individuals with MMA concentrations >0.5 μmol/l (vitamin B12 deficiency) were found only in the CAD group (P = 0.004). A positive correlation between MMA and Hcy mean concentrations was observed in both groups, CAD (P = 0.001) and non-CAD (P = 0.020). MMA mean concentrations were significantly higher in patients with hyperhomocysteinemia in both groups, CAD and non-CAD (P = 0.0063 and P = 0.013, respectively). Folate mean concentration was significantly lower in carriers of the wild-type MTHFR 1298AA genotype (P = 0.010). Conclusion Our results suggest a correlation between the MTHFR A1298C polymorphism and plasma folate concentration. Vitamin B12 deficiency, reflected by increased MMA concentration, is an important risk factor for the development both of hyperhomocysteinemia and CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sadeghian S, Fallahi F, Salarifar M et al (2006) Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc Disord 6:38–45. doi:10.1186/1471-2261-6-38

    Article  PubMed  Google Scholar 

  2. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):40–44. doi:10.1007/PL00014300

    Article  Google Scholar 

  3. Weisberg IS, Jacques PF, Selhub J et al (2001) The 1298A3C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156:409–415. doi:10.1016/S0021-9150(00)00671-7

    Article  CAS  PubMed  Google Scholar 

  4. Laraqui A, Allami A, Carrie A et al (2006) Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol 61:51–61. doi:10.2143/AC.61.1.2005140

    Article  PubMed  Google Scholar 

  5. Mager A, Battler A, Birnbaum Y et al (2002) Plasma homocysteine, methylene-tetrahydrofolate reductase genotypes, and age at onset of symptoms of myocardial ischemia. Am J Cardiol 89:919–923. doi:10.1016/S0002-9149(02)02239-7

    Article  CAS  PubMed  Google Scholar 

  6. Cesari M, Rossi GP, Sticchi D et al (2005) Is homocysteine important as risk factor for coronary heart disease? Nutr Metab Cardiovasc Dis 15:140–147. doi:10.1016/j.numecd.2004.04.002

    Article  PubMed  Google Scholar 

  7. Nishtar S (1999) The role of vitamins as risk modifying agents in coronary artery disease. Pak J Cardiol 10:5–7

    Google Scholar 

  8. Robinson K, Arheart K, Refsum H et al (1998) Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease: European COMAC Group. Circulation 97:437–443

    CAS  PubMed  Google Scholar 

  9. Robertson J, Iemolo F, Stabler SP et al (2005) Vitamin B12, homocysteine and carotid plaque in the era of folic acid fortification of enriched cereal grain products. CMAJ 172:1569–1573. doi:10.1503/cmaj.045055

    PubMed  Google Scholar 

  10. Savage D, Lindenbaum J, Stabler S et al (1994) Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med 3:239–246. doi:10.1016/0002-9343(94)90149-X

    Article  Google Scholar 

  11. Klee GG (2000) Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate. Clin Chem 46:1277–1283

    CAS  PubMed  Google Scholar 

  12. Kovachy RJ, Copley SD, Allen RH (1983) Recognition, isolation, and characterization of rat liver d-methylmalonyl coenzyme A hydrolase. J Biol Chem 258:11415–11421

    CAS  PubMed  Google Scholar 

  13. Stabler SP, Marcell PD, Allen RH (1985) Isolation and characterization of d, l-methylmalonyl coenzyme A racemase from rat liver. Arch Biochem Biophys 241:252–264. doi:10.1016/0003-9861(85)90381-9

    Article  CAS  PubMed  Google Scholar 

  14. Arruda VR, Siqueira LH, Gonçalves MS et al (1998) Prevalence of the mutation C677 → T in the Methylenetetrahydrofolate reductase gene among distinct ethnic groups in Brazil. Am J Med Genet 78:332–335. doi:10.1002/(SICI)1096-8628(19980724)78:4<332::AID-AJMG5>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  15. Haddad R, Mendes MA, Hoehr NF et al (2001) Amino acid quantitation in aqueous matrices via trap and release membrane introduction mass spectrometry: homocysteine in human plasma. Analyst (Lond) 126:1212–1215. doi:10.1039/b104038n

    Article  CAS  Google Scholar 

  16. Vellasco AP, Haddad R, Eberlin MN et al (2002) Combined cysteine and homocysteine quantitation in plasma by trap and release membrane introduction mass spectrometry. Analyst (Lond) 127:1050–1053. doi:10.1039/b203832c

    Article  CAS  Google Scholar 

  17. Carvalho VM, Kok F (2008) Determination of serum methylmalonic acid by alkylative extraction and liquid chromatography coupled to tandem mass spectrometry. Anal Biochem 381:67–73. doi:10.1016/j.ab.2008.06.023

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro AB, Cardoso MA (2002) Construção de um questionário de freqüência alimentar como subsídio para programas de prevenção de doenças crônicas não transmissíveis. Revista de Nutrição—Campinas 15:201–207

    Google Scholar 

  19. Institute of Medicine (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. 7 National Academy Press, Washington (DC)

    Google Scholar 

  20. Abdel-Rahman SZ, Nouraldeen AM, Ahmed AE (1994) Molecular interaction of [2, 3–14C] acrylonitrile with DNA in gastric tissues of rat. J Biochem Toxicol 9:191–198. doi:10.1002/jbt.2570090404

    Article  CAS  PubMed  Google Scholar 

  21. Bova I, Chapman J, Sylantiev C et al (1999) The A677 V methylenetetrahydrofolate reductase gene polymorphism and carotid atherosclerosis. Stroke 30:2180–2182

    CAS  PubMed  Google Scholar 

  22. Ranjith N, Pegoraro RJ, Rom L (2003) Risk factors and methylenetetrahydrofolate reductase gene polymorphisms in a young South African Indian-based population with acute myocardial infarction. Cardiovasc J S Afr 14:127–132

    CAS  PubMed  Google Scholar 

  23. Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11(Suppl 1):56–64. doi:10.1038/sj.cdd.4401451

    Article  Google Scholar 

  24. Nihei S, Tasaki H, Yamashita K et al (2004) Hyperhomocysteinemia is associated with human coronary atherosclerosis through the reduction of the ratio of endothelium-bound to basal extracellular superoxide dismutase. Circ J 68:822–828. doi:10.1253/circj.68.822

    Article  CAS  PubMed  Google Scholar 

  25. Yilmaz H, Isbir S, Agachan B et al (2006) C677T mutation of methylenetetrahydrofolate reductase gene and serum homocysteine levels in Turkish patients with coronary artery disease. Cell Biochem Funct 24:87–90. doi:10.1002/cbf.1206

    Article  CAS  PubMed  Google Scholar 

  26. Haviv YS, Shpichinetsky V, Goldschmidt N et al (2002) The common mutations C677T and A1298C in the human methylenetetrahydrofolate reductase gene are associated with hyperhomocysteinemia and cardiovascular disease in hemodialysis patients. Nephron 92:120–126. doi:10.1159/000064485

    Article  CAS  PubMed  Google Scholar 

  27. Meisel C, Cascorbi I, Gerloff T et al (2001) Identification of six methylenetetrahydrofolate reductase (MTHFR) genotypes resulting from common polymorphisms: impact on plasma homocysteine levels and development of coronary artery disease. Atherosclerosis 154:651–658. doi:10.1016/S0021-9150(00)00679-1

    Article  CAS  PubMed  Google Scholar 

  28. Guerzoni AR, Pavarino-Bertelli EC, Godoy MF et al (2007) Methylenetetrahydrofolate reductase gene polymorphism and its association with coronary artery disease. Sao Paulo Med J 125:4–8. doi:10.1590/S1516-31802007000100002

    Article  PubMed  Google Scholar 

  29. Kolling K, Ndrepepa G, Koch W et al (2004) Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms, plasma homocysteine, folate, and vitamin B12 levels and the extent of coronary artery disease. Am J Cardiol 93:1201–1206. doi:10.1016/j.amjcard.2004.02.009

    Article  PubMed  Google Scholar 

  30. Huh HJ, Chi HS, Shim EH et al (2006) Gene-nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population. Thromb Res 117:501–506. doi:10.1016/j.thromres.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  31. Jee SH, Song KS, Shim WH et al (2002) Major gene evidence after MTHFR-segregation analysis of serum homocysteine in families of patients undergoing coronary arteriography. Hum Genet 111:128–135. doi:10.1007/s00439-002-0757-8

    Article  CAS  PubMed  Google Scholar 

  32. Kebert CB, Eichner JE, Moore WE et al (2006) Relationship of the 1793G-A and 677C-T polymorphisms of the 5,10-methylenetetrahydrofolate reductase gene to coronary artery disease. Dis Markers 22:293–301

    CAS  PubMed  Google Scholar 

  33. Weisberg I, Tran P, Christensen B et al (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172. doi:10.1006/mgme.1998.2714

    Article  CAS  PubMed  Google Scholar 

  34. Szczeklik A, Sanak M, Jankowski M et al (2001) Mutation A1298C of methylene tetrahydrofolate reductase: risk for early coronary disease not associated with hyperhomocysteinemia. Am J Med Genet 101:36–39. doi:10.1002/ajmg.1315

    Article  CAS  PubMed  Google Scholar 

  35. Abu-Amero KK, Wyngaard CA, Dzimiri N (2003) Prevalence and role of methylenetetrahydrofolate reductase 677 C → T and 1298 A → C polymorphisms in coronary artery disease in arabs. Arch Pathol Lab Med 127:1349–1352

    CAS  PubMed  Google Scholar 

  36. Klerk M, Lievers KJA, Kluijtmans LAJ et al (2003) The 2756A>G in the gene encoding methionine synthase: its relation with plasma homocysteine levels and risk of coronary heart disease in a Dutch case-control study. Thromb Res 110:87–91. doi:10.1016/S0049-3848(03)00341-4

    Article  CAS  PubMed  Google Scholar 

  37. D’Angelo A, Coppola A, Madonna P et al (2000) The role of vitamin B12 in fasting hyperhomocysteinemia and its interaction with the homozygous C677T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene. A case-control study of patients with early-onset thrombotic events. Thromb Haemost 83:563–570

    PubMed  Google Scholar 

  38. Morita H, Kurihara H, Sugiyama T et al (1999) Polymorphism of the methionine synthase gene-association with homocysteine metabolism and late-onset vascular diseases in the Japanese population. Arteriol Thromb Vasc Biol 19:298–302

    CAS  Google Scholar 

  39. Chen J, Stampfer MJ, Ma J et al (2001) Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis 154:667–672. doi:10.1016/S0021-9150(00)00469-X

    Article  CAS  PubMed  Google Scholar 

  40. Wang XL, Cai H, Cranney G et al (1998) The frequency of a common mutation of the methionine synthase gene in the Australian population and its relation to smoking and coronary artery disease. J Cardiovasc Risk 5:289–295. doi:10.1097/00043798-199810000-00001

    Article  CAS  PubMed  Google Scholar 

  41. Bates CJ, Pentieva KD, Prentice A et al (1999) Plasma pyridoxal phosphate and pyridoxic acid and their relationship to plasma homocysteine in a representative sample of British men and women aged 65 years and over. Br J Nutr 81:191–201

    CAS  PubMed  Google Scholar 

  42. Siri PW, Verhoef P, Kok FJ (1998) Vitamins B6, B12, and folate: association with plasma total homocysteine and risk of coronary atherosclerosis. J Am Coll Nutr 17:435–441

    CAS  PubMed  Google Scholar 

  43. Busch M, Franke S, Müller A et al (2004) Potential cardiovascular risk factors in chronic kidney disease: AGEs, total homocysteine and metabolites, and the C-reactive protein. Kidney Int 66:338–347. doi:10.1111/j.1523-1755.2004.00736.x

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Sim AS, Wang XL et al (2008) Relations between markers of renal function, coronary risk factors and the occurrence ans severity of coronary artery disease. Atherosclerosis 197:853–859. doi:10.1016/j.atherosclerosis.2007.07.034

    Article  CAS  PubMed  Google Scholar 

  45. Colman N (1981) Laboratory assessment of folate status. Clin Lab Med 1:775–796

    Google Scholar 

  46. Iqbal MP, Ishaq M, Kazmi KA et al (2005) Role of vitamins B6, B12 and folic acid on hyperhomocysteinemia in a Pakistani population of patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 15:100–108. doi:10.1016/j.numecd.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  47. Verhoef P, Stampfer MJ, Buring JE et al (1996) Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol 143:845–859

    CAS  PubMed  Google Scholar 

  48. Riboli E, Ronnholm H, Saracci R (1987) Biological markers of diet. Cancer Surv 6:685–718

    CAS  PubMed  Google Scholar 

  49. Kapiszewska M, Kalemba M, Wojciech U et al (2005) Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study. J Nutr Biochem 16:467–478. doi:10.1016/j.jnutbio.2005.01.018

    Article  CAS  PubMed  Google Scholar 

  50. Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220. doi:10.1073/pnas.95.22.13217

    Article  CAS  PubMed  Google Scholar 

  51. Girelli D, Martinelli N, Pizzolo F et al (2003) The interaction between MTHFR 677 C → T genotype and folate status is a determinant of coronary atherosclerosis risk. J Nutr 133:1281–1285

    CAS  PubMed  Google Scholar 

  52. Kluijtmans LA, Young IS, Boreham CA et al (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101:2483–2488. doi:10.1182/blood.V101.7.2483

    Article  CAS  PubMed  Google Scholar 

  53. Geisel J, Zimbelmann I, Schorr H et al (2001) Genetic defects as important factors for moderate hyperhomocysteinemia. Clin Chem Lab Med 39:698–704. doi:10.1515/CCLM.2001.115

    Article  CAS  PubMed  Google Scholar 

  54. Hyndman ME, Bridge PJ, Warnica JW et al (2000) Effect of heterozygosity for the methionine synthase 2756 A–>G mutation on the risk for recurrent cardiovascular events. Am J Cardiol 86:1144–1146. doi:10.1016/S0002-9149(00)01177-2

    Article  CAS  PubMed  Google Scholar 

  55. Vitarelli A, De Curtis G, Conde Y et al (2002) Assessment of congenital coronary artery fistulas by transesophageal color Doppler echocardiography. Am J Med 113:127–133. doi:10.1016/S0002-9343(02)01157-9

    Article  PubMed  Google Scholar 

  56. Nieman K, Rensing BJ, Van Geuns RJ et al (2002) Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol 89:913–918. doi:10.1016/S0002-9149(02)02238-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. José Antônio Cordeiro for statistical analysis, Celso Pereira Reis Filho for database management, and acknowledge the financial support granted by The State of São Paulo Research Foundation (FAPESP), Coordination for the Improvement of Higher Education (CAPES), National Council for Scientific and Technological Development (CNPq), and Fleury Medicine and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Matos Biselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biselli, P.M., Guerzoni, A.R., de Godoy, M.F. et al. Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. J Thromb Thrombolysis 29, 32–40 (2010). https://doi.org/10.1007/s11239-009-0321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-009-0321-7

Keywords

Navigation