Skip to main content

Advertisement

Log in

Transfusion associated microchimerism: a heretofore little recognized complication following transfusion

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Potent antiplatelet and antithrombotic agents have significantly reduced mortality in the setting of acute coronary syndromes and percutaneous coronary intervention. However these agents are associated with increased bleeding which is in turn associated with adverse clinical outcomes. In many centers, transfusion is often used to correct for blood loss. Blood transfusion in the setting of acute coronary syndrome has been associated with adverse clinical outcomes including increased mortality. Transfusion associated microchimerism (TA-MC) is a newly recognized complication of blood transfusion. There is engraftment of the donor’s hematopoietic stem cells in patients who then develop microchimerism. This article discusses the association of bleeding/blood transfusion with adverse outcomes and the potential role of TA-MC in clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

ACUITY:

Acute catheterization and urgent intervention triage strategy

ASSENT:

Assessment of the safety and efficacy of a new thrombolytic regimen

CABG:

Coronary artery bypass surgery

CLARITY:

Clopidogrel as adjunctive reperfusion therapy

COMMIT:

Clopidogrel and metoprolol in myocardial infarction trial

CURE:

Clopidogrel in unstable angina to prevent recurrent events trial

EPIC:

Evaluation of c7E3 for prevention of ischemic complications

EPILOG:

Evaluation in PTCA to improve long-term outcome with abciximab GP IIb/IIIa blockade

ESPRIT:

Enhanced suppression of the platelet IIb/IIIa receptor with integrilin therapy

ESSENCE:

Efficacy and safety of subcutaneous enoxaparin in non-Q-wave coronary events trial

EXTRACT:

Enoxaparin and thrombolysis reperfusion for acute myocardial infarction treatment

GRACE:

Global registry of acute coronary events

GUSTO:

Global utilization of streptokinase to open occluded arteries

GvHD:

Graft versus host disease

Hb:

Hemoglobin

HERO:

Hirulog and early reperfusion or occlusion

HIV:

Human immunodeficiency virus

HORIZONS:

Harmonizing outcomes with revascularization and stents

IL:

Interleukin

MI:

Myocardial infarction

NSTEMI:

Non ST elevation myocardial infarction

OASIS:

Organization to assess strategies for ischemic syndromes

PCI:

Percutaneous coronary intervention

PCR:

Polymerase chain reaction

PURSUIT:

Platelet glycoprotein IIB/IIIA in unstable angina: receptor suppression using integrilin therapy

REPLACE:

Randomized evaluation in PCI linking angiomax to reduced clinical events

STEEPLE:

Safety and efficacy of enoxaparin in PCI patients, an international randomized evaluation

STEMI:

ST elevation myocardial infarction

SYNERGY:

Superior yield of the new strategy of enoxaparin, revascularization and glycoprotein IIb/IIIa inhibitors trial

TAMC:

Transfusion associated microchimerism

TIMI:

Thrombolysis in myocardial infarction

TNF:

Tumor necrosis factor

TRITON:

Trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial infarction-38

References

  1. Antman EM, Hand M, Armstrong PW, Bates ER, Green LA, Halasyamani LK et al (2008) 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 writing group to review new evidence and update the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction, writing on behalf of the 2004 writing committee. Circulation 117:296–329. doi:10.1161/CIRCULATIONAHA.107.188209

    Article  PubMed  Google Scholar 

  2. King SBIII, Smith SC Jr, Hirshfeld JW Jr, Jacobs AK, Morrison DA, Williams DO et al (2008) 2007 focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 51:172–209. doi:10.1016/j.jacc.2007.10.002

    Article  PubMed  Google Scholar 

  3. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr et al (2007) ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 2002 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol 50:e1–e157. doi:10.1016/j.jacc.2007.02.013

    Article  PubMed  Google Scholar 

  4. Utter GH, Reed WF, Lee TH, Busch MP (2007) Transfusion-associated microchimerism. Vox Sang 93:188–195. doi:10.1111/j.1423-0410.2007.00954.x

    Article  PubMed  CAS  Google Scholar 

  5. The GUSTO Angiographic Investigators (1993) The effects of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular function and survival after acute myocardial infarction. N Engl J Med 329:1615–1622. doi:10.1056/NEJM199311253292204

    Article  Google Scholar 

  6. Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Dalen J et al (1987) Thrombolysis in myocardial infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 76:142–154

    PubMed  CAS  Google Scholar 

  7. Rao SV, O’Grady K, Pieper KS, Granger CB, Newby LK, Mahaffey KW, Moliterno DJ, Lincoff AM, Armstrong PW, de Van WF, Califf RM, Harrington RA (2006) A comparison of the clinical impact of bleeding measured by two different classifications among patients with acute coronary syndromes. J Am Coll Cardiol 47:809–816. doi:10.1016/j.jacc.2005.09.060

    Article  PubMed  Google Scholar 

  8. Schulman S, Kearon C (2005) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 3:692–694. doi:10.1111/j.1538-7836.2005.01204.x

    Article  PubMed  CAS  Google Scholar 

  9. Rao SV, Eikelboom JA, Granger CB, Harrington RA, Califf RM, Bassand JP (2007) Bleeding and blood transfusion issues in patients with non-ST-segment elevation acute coronary syndromes. Eur Heart J 28:1193–1204. doi:10.1093/eurheartj/ehm019

    Article  PubMed  Google Scholar 

  10. Segev A, Strauss BH, Tan M, Constance C, Langer A, Goodman SG (2005) Predictors and 1-year outcome of major bleeding in patients with non-ST-elevation acute coronary syndromes: insights from the Canadian acute coronary syndrome registries. Am Heart J 150:690–694. doi:10.1016/j.ahj.2004.11.012

    Article  PubMed  Google Scholar 

  11. Rao SV, O’Grady K, Pieper KS, Granger CB, Newby LK, de Van WF, Mahaffey KW, Califf WF, Harrington RA (2005) Impact of bleeding severity on clinical outcomes among patients with acute coronary syndromes. Am J Cardiol 96:1200–1206. doi:10.1016/j.amjcard.2005.06.056

    Article  PubMed  Google Scholar 

  12. Eikelboom JW, Mehta SR, Anand SS, Xie C, Fox KA, Yusuf S (2006) Adverse impact of bleeding on prognosis in patients with acute coronary syndromes. Circulation 114:774–782. doi:10.1161/CIRCULATIONAHA.106.612812

    Article  PubMed  Google Scholar 

  13. Moscucci M, Fox KA, Cannon CP, Klein W, Lopez-Sendon J, Montalescot G et al (2003) Predictors of major bleeding in acute coronary syndromes: the global registry of acute coronary events (GRACE). Eur Heart J 24:1815–1823. doi:10.1016/S0195-668X(03)00485-8

    Article  PubMed  CAS  Google Scholar 

  14. Cantor WJ, Mahaffey KW, Huang Z, Das P, Gulba DC, Glezer S et al (2007) Bleeding complications in patients with acute coronary syndrome undergoing early invasive management can be reduced with radial access, smaller sheath sizes, and timely sheath removal. Catheter Cardiovasc Interv 69:73–83. doi:10.1002/ccd.20897

    Article  PubMed  Google Scholar 

  15. Chase AJ, Fretz EB, Warburton WP, Klinke WP, Carere RG, Pi D et al (2008) Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (mortality benefit of reduced transfusion after percutaneous coronary intervention via the Arm or Leg). Heart 94:1019–1025. doi:10.1136/hrt.2007.136390

    Article  PubMed  CAS  Google Scholar 

  16. Rao SV, Chiswell K, Sun JL, Granger CB, Newby LK, Van de WF, White HD, Armstong PW, Califf RM, Harrington RA (2008) International variation in the use of blood transfusion in patients with non-ST-segment elevation acute coronary syndromes. Am J Cardiol 101:25–29. doi:10.1016/j.amjcard.2007.07.042

    Article  PubMed  Google Scholar 

  17. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Niles SE, McLaughlin DF et al (2008) Effect of plasma and red blood cell transfusions on survival in patients with combat related traumatic injuries. J Trauma 64:S69–S77. doi:10.1097/TA.0b013e318160ba2f

    Article  PubMed  Google Scholar 

  18. Moore FA, Nelson T, McKinley BA, Moore EE, Nathens AB, Rhee P et al (2008) Massive transfusion in trauma patients: tissue hemoglobin oxygen saturation predicts poor outcome. J Trauma 64:1010–1023. doi:10.1097/TA.0b013e31816a2417

    Article  PubMed  CAS  Google Scholar 

  19. Rao SV, Jollis JG, Harrington RA, Granger CB, Newby LK, Armstrong PW et al (2004) Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA 292:1555–1562. doi:10.1001/jama.292.13.1555

    Article  PubMed  CAS  Google Scholar 

  20. Wu WC, Rathore SS, Wang Y, Radford MJ, Krumholz HM (2001) Blood transfusion in elderly patients with acute myocardial infarction. N Engl J Med 345:1230–1236. doi:10.1056/NEJMoa010615

    Article  PubMed  CAS  Google Scholar 

  21. Jani SM, Smith DE, Share D, Kline-Rogers E, Khanal S, O’Donnell MJ et al (2007) Blood transfusion and in-hospital outcomes in anemic patients with myocardial infarction undergoing percutaneous coronary intervention. Clin Cardiol 30:II49–II56. doi:10.1002/clc.20236

    Article  PubMed  Google Scholar 

  22. Vamvakas EC, Taswell HF (1994) Long-term survival after blood transfusion. Transfusion 34:471–477. doi:10.1046/j.1537-2995.1994.34694295060.x

    Article  PubMed  CAS  Google Scholar 

  23. Malone DL, Dunne J, Tracy JK, Putnam AT, Scalea TM, Napolitano LM (2003) Blood transfusion, independent of shock severity, is associated with worse outcome in trauma. J Trauma 54:898–905. doi:10.1097/01.TA.0000060261.10597.5C

    Article  PubMed  Google Scholar 

  24. Moscucci M, Ricciardi M, Eagle KA, Kline E, Bates ER, Werns SW et al (1998) Frequency, predictors, and appropriateness of blood transfusion after percutaneous coronary interventions. Am J Cardiol 81:702–707. doi:10.1016/S0002-9149(97)01018-7

    Article  PubMed  CAS  Google Scholar 

  25. Kinnaird TD, Stabile E, Mintz GS, Lee CW, Canos DA, Gevorkian N et al (2003) Incidence, predictors, and prognostic implications of bleeding and blood transfusion following percutaneous coronary interventions. Am J Cardiol 92:930–935. doi:10.1016/S0002-9149(03)00972-X

    Article  PubMed  Google Scholar 

  26. Sadeghi HM, Grines CL, Chandra HR, Dixon SR, Boura JA, Dukkipati S et al (2003) Percutaneous coronary interventions in octogenarians. Glycoprotein IIb/IIIa receptor inhibitors’ safety profile. J Am Coll Cardiol 42:428–432. doi:10.1016/S0735-1097(03)00657-0

    Article  PubMed  CAS  Google Scholar 

  27. Kim P, Dixon S, Eisenbrey AB, O’Malley B, Boura J, O’Neill W (2007) Impact of acute blood loss anemia and red blood cell transfusion on mortality after percutaneous coronary intervention. Clin Cardiol 30:II35–II43. doi:10.1002/clc.20231

    Article  PubMed  Google Scholar 

  28. Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T et al (2008) Duration of red-cell storage and complications after cardiac surgery. N Engl J Med 358:1229–1239. doi:10.1056/NEJMoa070403

    Article  PubMed  CAS  Google Scholar 

  29. Martin C, Sibbald W, Lu X, Hebert P et al (1994) Age of transfused red blood cells is associated with ICU length of stay. Clin Invest Med 17:B21

    Google Scholar 

  30. Zallen G, Offner PJ, Moore EE, Blackwell J, Ciesla DJ, Gabriel J et al (1999) Age of transfused blood is an independent risk factor for postinjury multiple organ failure. Am J Surg 178:570–572. doi:10.1016/S0002-9610(99)00239-1

    Article  PubMed  CAS  Google Scholar 

  31. Carson JL, Altman DG, Duff A, Noveck H, Weinstein MP, Sonnenberg FA et al (1999) Risk of bacterial infection associated with allogeneic blood transfusion among patients undergoing hip fracture repair. Transfusion 39:694–700. doi:10.1046/j.1537-2995.1999.39070694.x

    Article  PubMed  CAS  Google Scholar 

  32. Vamvakas EC, Carven JH (1999) Transfusion and postoperative pneumonia in coronary artery bypass graft surgery: effect of the length of storage of transfused red cells. Transfusion 39:701–710. doi:10.1046/j.1537-2995.1999.39070701.x

    Article  PubMed  CAS  Google Scholar 

  33. Silverman HJ, Tuma P (1992) Gastric tonometry in patients with sepsis. Effects of dobutamine infusions and packed red blood cell transfusions. Chest 102:184–188. doi:10.1378/chest.102.1.184

    Article  PubMed  CAS  Google Scholar 

  34. Rao SV, Kaul PR, Liao L, Armstrong PW, Ohman EM, Granger CB et al (2008) Association between bleeding, blood transfusion, and costs among patients with non-ST-segment elevation acute coronary syndromes. Am Heart J 155:369–374. doi:10.1016/j.ahj.2007.10.014

    Article  PubMed  Google Scholar 

  35. Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL et al (2007) Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial. JAMA 297:603–610. doi:10.1001/jama.297.6.603

    Article  PubMed  CAS  Google Scholar 

  36. Drueke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D et al (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 355:2071–2084. doi:10.1056/NEJMoa062276

    Article  PubMed  CAS  Google Scholar 

  37. Fortune JB, Feustel PJ, Saifi J, Stratton HH, Newell JC, Shah DM (1987) Influence of hematocrit on cardiopulmonary function after acute hemorrhage. J Trauma 27:243–249. doi:10.1097/00005373-198703000-00003

    Article  PubMed  CAS  Google Scholar 

  38. Hebert PC, Yetisir E, Martin C, Blajchman MA, Wells G, Marshall J et al (2001) Is a low transfusion threshold safe in critically ill patients with cardiovascular diseases? Crit Care Med 29:227–234. doi:10.1097/00003246-200102000-00001

    Article  PubMed  CAS  Google Scholar 

  39. Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G et al (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293:2126–2130. doi:10.1001/jama.293.17.2126

    Article  PubMed  CAS  Google Scholar 

  40. Bassand JP (2008) Bleeding and transfusion in acute coronary syndromes: a shift in the paradigm. Heart 94:661–666. doi:10.1136/hrt.2007.125047

    Article  PubMed  Google Scholar 

  41. LaCelle P (1969) Alteration of deformability of the erythrocyte membrane in stored blood. Transfusion 9:229–237

    Article  Google Scholar 

  42. Nakao M, Nakao T, Yamazoe S, Yoshikawa H (1961) Adenosine triphosphate and shape of erythrocytes. J Biochem 49:487–492

    PubMed  CAS  Google Scholar 

  43. Card RT (1988) Red cell membrane changes during storage. Transfus Med Rev 2:40–47

    PubMed  CAS  Google Scholar 

  44. Card RT, Mohandas N, Mollison PL (1983) Relationship of post-transfusion viability to deformability of stored red cells. Br J Haematol 53:237–240. doi:10.1111/j.1365-2141.1983.tb02016.x

    Article  PubMed  CAS  Google Scholar 

  45. Wolfe LC (1989) Oxidative injuries to the red cell membrane during conventional blood preservation. Semin Hematol 26:307–312

    PubMed  CAS  Google Scholar 

  46. Valeri CR, Collins FB (1971) The physiologic effect of transfusing preserved red cells with low 2,3-diphosphoglycerate and high affinity for oxygen. Vox Sang 20:397–403

    PubMed  CAS  Google Scholar 

  47. Kristiansson M, Soop M, Shanwell A, Sundqvist KG (1996) Prestorage versus bedside white blood cell filtration of red blood cell concentrates: effects on the content of cytokines and soluble tumor necrosis factor receptors. J Trauma 40:379–383. doi:10.1097/00005373-199603000-00009

    Article  PubMed  CAS  Google Scholar 

  48. Fransen E, Maessen J, Dentener M, Senden N, Buurman W (1999) Impact of blood transfusions on inflammatory mediator release in patients undergoing cardiac surgery. Chest 116:1233–1239. doi:10.1378/chest.116.5.1233

    Article  PubMed  CAS  Google Scholar 

  49. McMahon TJ, Moon RE, Luschinger BP, Carraway MS, Stone AE, Stolp BW et al (2002) Nitric oxide in the human respiratory cycle. Nat Med 8:711–717

    PubMed  CAS  Google Scholar 

  50. Aboudara MC, Hurst FP, Abbott KC, Perkins RM (2008) Hyperkalemia after packed red blood cell transfusion in trauma patients. J Trauma 64:S86–S91. doi:10.1097/TA.0b013e318160c0b8

    Article  PubMed  CAS  Google Scholar 

  51. Smith HM, Farrow SJ, Ackerman JD, Stubbs JR, Sprung J (2008) Cardiac arrests associated with hyperkalemia during red blood cell transfusion: a case series. Anesth Analg 106:1062–1069. doi:10.1213/ane.0b013e31816b9478

    Google Scholar 

  52. Hogman CF, Meryman HT (1999) Storage parameters affecting red blood cell survival and function after transfusion. Transfus Med Rev 13:275–296. doi:10.1016/S0887-7963(99)80058-3

    Article  PubMed  CAS  Google Scholar 

  53. Greenwalt TJ, Zehner SC, Dumaswala UJ (1990) Studies in red blood cell preservation. 1. Effect of the other formed elements. Vox Sang 58:85–89

    PubMed  CAS  Google Scholar 

  54. Reed W, Lee TH, Norris PJ, Utter GH, Busch MP (2007) Transfusion-associated microchimerism: a new complication of blood transfusions in severely injured patients. Semin Hematol 44:24–31. doi:10.1053/j.seminhematol.2006.09.012

    Article  PubMed  Google Scholar 

  55. Dunne JR, Lee TH, Burns C, Cardo LJ, Curry K, Busch MP (2008) Transfusion-associated microchimerism in combat casualties. J Trauma 64:S92–S97. doi:10.1097/TA.0b013e318160a590

    Article  PubMed  Google Scholar 

  56. Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M (1992) Cell migration, chimerism, and graft acceptance. Lancet 339:1579–1582. doi:10.1016/0140-6736(92)91840-5

    Article  PubMed  CAS  Google Scholar 

  57. Bianchi DW (2000) Fetal cells in the mother: from genetic diagnosis to diseases associated with fetal cell microchimerism. Eur J Obstet Gynecol Reprod Biol 92:103–108. doi:10.1016/S0301-2115(00)00432-2

    Article  PubMed  CAS  Google Scholar 

  58. Bianchi DW, Lo YM (2001) Fetomaternal cellular and plasma DNA trafficking: the Yin and the Yang. Ann N Y Acad Sci 945:119–131

    PubMed  CAS  Google Scholar 

  59. Baxter-Lowe LA, Busch MP (2006) Tracking microchimeric DNA in plasma to diagnose and manage organ transplant rejection. Clin Chem 52:559–561. doi:10.1373/clinchem.2005.064766

    Article  PubMed  CAS  Google Scholar 

  60. Artlett CM, Smith JB, Jimenez SA (1998) Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 338:1186–1191. doi:10.1056/NEJM199804233381704

    Article  PubMed  CAS  Google Scholar 

  61. Lee TH, Paglieroni T, Utter GH, Chafets D, Gosselin RC, Reed W et al (2005) High-level long-term white blood cell microchimerism after transfusion of leukoreduced blood components to patients resuscitated after severe traumatic injury. Transfusion 45:1280–1290. doi:10.1111/j.1537-2995.2005.04223.x

    Article  PubMed  Google Scholar 

  62. Lee TH, Paglieroni T, Ohto H, Holland PV, Busch MP (1999) Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term microchimerism in severe trauma patients. Blood 93:3127–3139

    PubMed  CAS  Google Scholar 

  63. Utter GH, Owings JT, Lee TH, Paglieroni TG, Reed WF, Gosselin RC et al (2004) Blood transfusion is associated with donor leukocyte microchimerism in trauma patients. J Trauma 57:702–707. doi:10.1097/01.TA.0000140666.15972.37

    Article  PubMed  Google Scholar 

  64. Utter GH, Owings JT, Lee TH, Paglieroni TG, Reed WF, Gosselin RC et al (2005) Microchimerism in transfused trauma patients is associated with diminished donor-specific lymphocyte response. J Trauma 58:925–931. doi:10.1097/01.TA.0000162142.72817.5C

    Article  PubMed  Google Scholar 

  65. Gill RM, Lee TH, Utter GH, Reed WF, Wen L, Chafets D et al (2008) The TNF (-308A) polymorphism is associated with microchimerism in transfused trauma patients. Blood 111:3880–3883. doi:10.1182/blood-2007-08-107144

    Article  PubMed  CAS  Google Scholar 

  66. Utter GH, Nathens AB, Lee TH, Reed WF, Owings JT, Nester TA et al (2006) Leukoreduction of blood transfusions does not diminish transfusion-associated microchimerism in trauma patients. Transfus 46:1863–1869. doi:10.1111/j.1537-2995.2006.00991.x

    Article  Google Scholar 

  67. Kruskall MS, Lee TH, Assmann SF, Laycock M, Kalish LA, Lederman MM et al (2001) Survival of transfused donor white blood cells in HIV-infected recipients. Blood 98:272–279. doi:10.1182/blood.V98.2.272

    Article  PubMed  CAS  Google Scholar 

  68. Reed W, Lee TH, Vichinsky EP, Lubin BH, Busch MP (1998) Sample suitability for the detection of minor white cell populations (microchimerism) by polymerase chain reaction. Transfusion 38:1041–1045. doi:10.1046/j.1537-2995.1998.38111299056314.x

    Article  PubMed  CAS  Google Scholar 

  69. Adams KM, Nelson JL (2004) Microchimerism: an investigative frontier in autoimmunity and transplantation. JAMA 291:1127–1131. doi:10.1001/jama.291.9.1127

    Article  PubMed  CAS  Google Scholar 

  70. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A et al (1998) Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351:559–562. doi:10.1016/S0140-6736(97)08357-8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michael Gibson.

Additional information

The authors have received research grant support and consulting fees in the past from Eli Lilly, Schering Plough, and Astra Zeneca.

Dr. Vijayalakshmi Kunadian has received unrestricted educational research grant support from South Cleveland Heart Fund, The James Cook University Hospital, Middlesbrough, United Kingdom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunadian, V., Zorkun, C., Gibson, W.J. et al. Transfusion associated microchimerism: a heretofore little recognized complication following transfusion. J Thromb Thrombolysis 27, 57–67 (2009). https://doi.org/10.1007/s11239-008-0268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-008-0268-0

Keywords

Navigation