Skip to main content
Log in

Mutation-prone points in thrombin receptor

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Background Thrombin receptor (TR) is a G-protein-coupled receptor that transmits cellular responses to coagulant proteases in a variety of cell types in the vasculature and other tissues. Mutation within TR can be seen. Presently, the prediction of protein nanostructure and function is a great challenge in the proteomics and structural genomics era. Methods To identify the points vulnerable to mutation is a new trend directed at expanding the knowledge on disorders in genomic and proteomic levels of diseases. In this paper, the author performed a bioinformatics analysis to find the mutation-prone positions in the amino acid sequence of TR. To identify those points in TR, a new bioinformatics tool, namely, GlobPlot was used. Results According to this work, no position was identified to be resistant to mutation. Conclusion This means that TR is a very highly genetically unstable molecule. Thousands of types of mutation can be expected. Of interest, only a few sense mutations are mentioned in clinical settings. Therefore, many occulted sense mutations might still be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Traynelis SF, Trejo J (2007) Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr Opin Hematol 14:230–235

    Article  PubMed  CAS  Google Scholar 

  2. Landis RC (2007) Protease activated receptors: clinical relevance to hemostasis and inflammation. Hematol Oncol Clin North Am 21:103–113

    Article  PubMed  Google Scholar 

  3. Schmidt VA, Nierman WC, Maglott DR, Cupit LD, Moskowitz KA, Wainer JA, Bahou WF (1998) The human proteinase-activated receptor-3 (PAR-3) gene. Identification within a Par gene cluster and characterization in vascular endothelial cells and platelets. J Biol Chem 273:15061–15068

    Article  PubMed  CAS  Google Scholar 

  4. Meadows TA, Bhatt DL (2007) Clinical aspects of platelet inhibitors and thrombus formation. Circ Res 100:1261–1275

    Article  PubMed  CAS  Google Scholar 

  5. Baglin T (2005) The measurement and application of thrombin generation. Br J Haematol 130:653–661

    Article  PubMed  CAS  Google Scholar 

  6. Bahou WF, Demetrick DJ (1997) The human thrombin receptor gene and the 5q-syndrome. Leuk Lymphoma 27:1–10

    PubMed  CAS  Google Scholar 

  7. Nurden AT (1995) Polymorphisms of human platelet membrane glycoproteins: structure and clinical significance. Thromb Haemost 74:345–351

    PubMed  CAS  Google Scholar 

  8. Arnaud E, Nicaud V, Poirier O, Rendu F, Alhenc-Gelas M, Fiessinger JN, Emmerich J, Aiach M (2000) Protective effect of a thrombin receptor (protease-activated receptor 1) gene polymorphism toward venous thromboembolism. Arterioscler Thromb Vasc Biol 20:585–592

    PubMed  CAS  Google Scholar 

  9. Arnaud E, Poirier O, Aiach M, Cambien F (2000) The −5061/D polymorphism of the thrombin receptor (PAR-1) gene is not related to myocardial infarction in the ECTIM study. The Etude Cas-Temoins de l’Infarctus du Myocarde. MONICA Members Group. Thromb Haemost 84:722–723

    PubMed  CAS  Google Scholar 

  10. Smith SM, Judge HM, Peters G, Armstrong M, Dupont A, Gaussem P, Storey RF (2005) PAR-1 genotype influences platelet aggregation and procoagulant responses in patients with coronary artery disease prior to and during clopidogrel therapy. Platelets 16:340–345

    Article  PubMed  CAS  Google Scholar 

  11. Park HY, Nabika T, Jang Y, Kim D, Kim HS, Masuda J (2000) Identification of new single-nucleotide polymorphisms in the thrombin receptor gene and their effects on coronary artery diseases in Koreans. Clin Exp Pharmacol Physiol 27:690–693

    Article  PubMed  CAS  Google Scholar 

  12. Lee C, Wang Q (2005) Bioinformatics analysis of alternative splicing. Brief Bioinform 6:23–33

    Article  PubMed  CAS  Google Scholar 

  13. Levin JM, Penland RC, Stamps AT, Cho CR (2002) Using in silico biology to facilitate drug development. Novartis Found Symp 247:222–238

    Article  PubMed  CAS  Google Scholar 

  14. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  15. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708

    Article  PubMed  CAS  Google Scholar 

  16. Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  CAS  Google Scholar 

  17. Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular diseases. Circulation 114:1070–1077

    Article  PubMed  CAS  Google Scholar 

  18. Chackalamannil S (2006) Thrombin receptor (protease activated receptor-1) antagonists as potent antithrombotic agents with strong antiplatelet effects. J Med Chem 49:5389–5403

    Article  PubMed  CAS  Google Scholar 

  19. Lundblad RL, White GC 2nd (2005) The interaction of thrombin with blood platelets. Platelets 16:373–385

    Article  PubMed  CAS  Google Scholar 

  20. Ohlin AK, Norlund L, Marlar RA (1997) Thrombomodulin gene variations and thromboembolic disease. Thromb Haemost 78:396–400

    PubMed  CAS  Google Scholar 

  21. Kunishima S, Kamiya T, Saito H (2002) Genetic abnormalities of Bernard-Soulier syndrome. Int J Hematol 76:319–327

    PubMed  CAS  Google Scholar 

  22. Nishino M, Fujimura Y (1997) Information on von Willebrand disease. Rinsho Byori 45:942–950

    PubMed  CAS  Google Scholar 

  23. Gogarten JP, Olendzenski L (1999) Orthologs, paralogs and genome comparisons. Curr Opin Genet Dev 9:630–636

    Article  PubMed  CAS  Google Scholar 

  24. Golaz O, Wilkins MR, Sanchez JC, Appel RD, Hochstrasser DF, Williams KL (1996) Identification of proteins by their amino acid composition: an evaluation of the method. Electrophoresis 17:573–579

    Article  PubMed  CAS  Google Scholar 

  25. Wiwanitkit V (2006) Where is the weak linkage in the globin chain? Int J Nanomed 1:109–110

    Article  CAS  Google Scholar 

  26. Linding R, Schymkowitz J, Rousseau F, Diella F, Serrano L (2004) A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342:345–353

    Article  PubMed  CAS  Google Scholar 

  27. Azuaje F, Al-Shahrour F, Dopazo J (2006) Ontology-driven approaches to analyzing data in functional genomics. Methods Mol Biol 316:67–86

    PubMed  Google Scholar 

  28. Khan S, Situ G, Decker K, Schmidt CJ (2003) GoFigure: automated gene ontology annotation. Bioinformatics 19:2484–2485

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viroj Wiwanitkit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiwanitkit, V. Mutation-prone points in thrombin receptor. J Thromb Thrombolysis 25, 190–192 (2008). https://doi.org/10.1007/s11239-007-0167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-007-0167-9

Keywords

Navigation