Skip to main content
Log in

Majority properties of positional social preference correspondences

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

We characterize the positional social preference correspondences (spc) satisfying the qualified majority property for any given majority threshold. We also characterize the positional spcs satisfying the minimal majority property. We next evaluate the probability that the Borda, the plurality and the antiplurality spcs fulfil the two aforementioned properties under the Impartial and Anonymous Culture assumption in the presence of three and four alternatives for various sizes of the society. Our results show that the Borda spc is the positional spc which better behaves in relation with the qualified majority principle and the minimal majority principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The result follows, for instance, from Propositions 6 and 7 in Bubboloni and Gori (2014) (see Sect. 2).

  2. An analysis of the majority properties for positional social choice correspondences is instead carried on by Baharad and Nitzan (2003) and Courtin et al. (2015). Those authors use the expression “Condorcet consistency” to refer to qualified majority.

  3. See also Craven (1971) and Ferejohn and Grether (1974).

  4. See also (Saari, 2014).

  5. In fact, in Nakamura (1979) individual preferences are modelled by relations whose asymmetric part is acyclic and not by linear orders. However, by the proof of Theorem 2.3 in Nakamura (1979), we deduce that if (NW) is not weak and \(\mu(N,W)\le m\), then there exists \(p\in {\mathcal {P}}\) such that \(\Sigma _{(N,W)}(p)\) is cyclic. On the other hand, by the proof of Theorem 2.5 in Nakamura (1979), we deduce that if there exists \(p\in {\mathcal {P}}\) such that \(\Sigma _{(N,W)}(p)\) is cyclic, then (NW) is not weak and \(\mu(N,W)\le m\).

  6. Note that Corollary 6 is in line with what proved by Baharad and Nitzan (2003) about the Borda social choice correspondence.

  7. If \(\nu =n\), then we set \(\{\nu +1,\ldots ,n\}=\varnothing\).

  8. This method has been introduced in the social choice literature by Lepelley et al. (2008) and Wilson and Pritchard (2007).

  9. Note that in those tables the probability values 1 and 1.0000 have different meanings. The value 1 referred to a certain property means that one of our theoretical results can be applied and that such a property is then true; the value 1.0000 in Tables 1, 2, 3 and 4 stands for an exact but rounded probability; the value 1.0000 in Tables 5, 6, 7 and 8 stands for an approximated probability obtained using our simulation method.

  10. The free software to calculate the integer points under the Parameterized Barvinok’s algorithm can be found at http://freecode.com/projects/barvinok. The algorithm allows one to quantify the number of integer solutions for systems of (in)equalities with parameters.

  11. The other representations of \(\pi\) for all the considered spcs are available upon request.

References

  • Baharad, E., & Nitzan, S. (2003). The Borda rule, Condorcet consistency and Condorcet stability. Economic Theory, 22, 685–688.

    Article  Google Scholar 

  • Barvinok, A. (1994). Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Mathematics of Operations Research, 19, 769–779.

    Article  Google Scholar 

  • Barvinok, A., & Pommersheim, J. (1999). An algorithmic theory of lattice points in polyhedra. Mathematical Sciences Research Institute Publications, 38, 91–147.

    Google Scholar 

  • Brandt, F., Geist, C., & Strobel, M. (2021a). Analyzing the practical relevance of the Condorcet loser paradox and the agenda contraction paradox. Studies in choice and welfare. In M. Diss & V. Merlin (Eds.), Evaluating voting systems with probability models, essays by and in honor of William Gehrlein and Dominique Lepelley. Berlin: Springer.

    Google Scholar 

  • Brandt, F., Hofbauer, J., & Strobel, M. (2021b). Exploring the no-show paradox for Condorcet extensions. Studies in choice and welfare. In M. Diss & V. Merlin (Eds.), Evaluating voting systems with probability models, essays by and in honor of William Gehrlein and Dominique Lepelley. Berlin: Springer.

    Google Scholar 

  • Bruns, W., Ichim, B., & Söger, C. (2019). Computations of volumes and Ehrhart series in four candidate elections. Annals of Operations Research, 280, 241–265.

    Article  Google Scholar 

  • Bruns, W., & Söger, C. (2015). The computation of generalized Ehrhart series in Normaliz. Journal of Symbolic Computation, 68, 75–86.

    Article  Google Scholar 

  • Bubboloni, D., Diss, M., & Gori, M. (2020). Extensions of the Simpson voting rule to the committee selection setting. Public Choice, 183, 151–185.

    Article  Google Scholar 

  • Bubboloni, D., & Gori, M. (2014). Anonymous and neutral majority rules. Social Choice and Welfare, 43, 377–401.

    Article  Google Scholar 

  • Bubboloni, D., & Gori, M. (2015). Symmetric majority rules. Mathematical Social Sciences, 76, 73–86.

    Article  Google Scholar 

  • Can, B., & Storcken, T. (2013). Update monotone preference rules. Mathematical Social Sciences, 65, 136–149.

    Article  Google Scholar 

  • Courtin, S., Martin, M., & Tchantcho, B. (2015). Positional rules and \(q\)-Condorcet consistency. Review of Economic Design, 19, 229–245.

    Article  Google Scholar 

  • Craven, J. (1971). Majority voting and social choice. The Review of Economic Studies, 38, 265–267.

    Article  Google Scholar 

  • Diss, M., Kamwa, E., & Tlidi, A. (2020). On some \(k\)-scoring rules for committee elections: Agreement and Condorcet Principle. Revue d’Economie Politique, 130(5), 699–725.

    Article  Google Scholar 

  • Diss, M., & Merlin, V. (2021). Evaluating voting systems with probability models, essays by and in honor of William Gehrlein and Dominique Lepelley. Studies in choice and welfare. Berlin: Springer.

    Book  Google Scholar 

  • Ehrhart, E. (1962). Sur les polyèdres rationnels homothétiques à \(n\) dimensions. Comptes Rendus de l’Académie des Sciences, 254, 616–618.

    Google Scholar 

  • Ehrhart, E. (1977). Polynômes arithmétiques et méthodes des polyèdres en combinatoire. International series of numerical mathmatics (Vol. 35). Stuttgart: Birkhaausser Verlag Bassel.

    Google Scholar 

  • El Ouafdi, A., Lepelley, D., & Smaoui, H. (2020). Probabilities of electoral outcomes: From three-candidate to four-candidate elections. Theory and Decision, 88, 205–229.

    Article  Google Scholar 

  • El Ouafdi, A., Moyouwou, I., & Smaoui, H. (2021). IAC-probability calculations in voting theory: Progress report. Studies in choice and welfare. In M. Diss & V. Merlin (Eds.), Evaluating voting systems with probability models, essays by and in honor of William Gehrlein and Dominique Lepelley. Berlin: Springer.

    Google Scholar 

  • Ferejohn, J. A., & Grether, D. M. (1974). On a class of rational social decision procedures. Journal of Economic Theory, 8, 471–482.

    Article  Google Scholar 

  • Gehrlein, W. V., & Fishburn, P. C. (1976). Condorcet’s paradox and anonymous preference profiles. Public Choice, 26, 1–18.

    Article  Google Scholar 

  • Gehrlein, W. V., & Lepelley, D. (2011). Voting paradoxes and group coherence. Studies in choice and welfare. Berlin: Springer.

    Book  Google Scholar 

  • Gehrlein, W. V., & Lepelley, D. (2017). Elections, voting rules and paradoxical outcomes. Studies in choice and welfare. Berlin: Springer.

    Book  Google Scholar 

  • Greenberg, J. (1979). Consistent majority rules over compact sets of alternatives. Econometrica, 47, 627–636.

    Article  Google Scholar 

  • Kamwa, E., & Merlin, V. (2019). Scoring rules over subsets of alternatives: A general formula to analyze consistency in four candidate elections under the Impartial Culture. Computational Economics, 53(4), 1377–1395.

    Article  Google Scholar 

  • Kuga, K., & Hiroaki, N. (1974). Voter antagonism and the paradox of voting. Econometrica, 42, 1045–1067.

    Article  Google Scholar 

  • Lepelley, D., Louichi, A., & Smaoui, H. (2008). On Ehrhart polynomials and probability calculations in voting theory. Social Choice and Welfare, 30, 363–383.

    Article  Google Scholar 

  • Nakamura, K. (1979). The vetoers in a simple game with ordinal preferences. International Journal of Game Theory, 8, 55–61.

    Article  Google Scholar 

  • Saari, D. G. (2014). Unifying voting theory from Nakamura’s to Greenberg’s theorems. Mathematical Social Sciences, 69, 1–11.

    Article  Google Scholar 

  • Verdoolaege, S., Seghir, R. Beyls, K., Loechner, V., & Bruynooghe, M. (2004). Analytical computation of Ehrhart polynomials: Enabling more compiler analysis and optimizations. In Proceedings of international conference on compilers, architecture, and synthesis for embedded systems (pp. 248–258), Washington, DC, USA.

  • Wilson, M. C., & Pritchard, G. (2007). Probability calculations under the IAC hypothesis. Mathematical Social Sciences, 54, 244–256.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank two anonymous reviewers and Daniela Bubboloni for providing useful comments and suggestions. Mostapha Diss would like to acknowledge the financial supports from Université de Lyon (project INDEPTH Scientific Breakthrough Program of IDEX Lyon) within the program Investissement d’Avenir (ANR-16-IDEX-0005) and from Université de Franche-Comté within the program Chrysalide-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostapha Diss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Three alternatives and qualified majority: exact probabilities

Assume that the set of alternatives is \(A=\{a,b,c\}\) and the set of individuals is \(N=\{1,\ldots ,n\}\). For the sake of simplicity, for every \(x,y\in A\), we write in what follows xy instead of (xy). Let \({\mathcal {G}}(A)\) be the set of asymmetric relations over A. Thus, we have that

$$\begin{aligned} {\mathcal {G}}(A)=\left\{ \begin{array}{ll} \varnothing , \{ab\}, \{ba\}, \{ac\}, \{ca\}, \{bc\}, \{cb\}, \{ab,ac\}, \{ab,ca\}, \{ab,bc\}, \\ \{ab,cb\}, \{ba,ac\}, \{ba,ca\}, \{ba,bc\}, \{ba,cb\}, \{ac,bc\}, \{ac,cb\}, \\ \{ca,bc\}, \{ca,cb\}, \{ab,ac,bc\}, \{ab,ac,cb\}, \{ab,ca,bc\}, \{ab,ca,cb\}, \\ \{ba,ac,bc\}, \{ba,ac,cb\}, \{ba,ca,bc\}, \{ba,ca,cb\} \end{array} \right\} . \end{aligned}$$

Let E be the correspondence from \({\mathcal {G}}(A)\) to \({\mathcal {L}}(A)\) defined, for every \(R\in {\mathcal {G}}(A)\), by

$$\begin{aligned} E(R)=\{q\in {\mathcal {L}}(A): R\subseteq q\}. \end{aligned}$$

Let

$$\begin{aligned} \Gamma =\Big \{(R,S)\in {\mathcal {G}}(A)^2:E(R)\subseteq E(S)\Big \}, \end{aligned}$$

and consider the following subsets of \({\mathcal {G}}(A)^2\):

$$\begin{aligned} \begin{array}{l} \Gamma _1=\left\{ (\varnothing ,\varnothing )\right\} \\ \Gamma _2=\{\{ab\}\}\times \{\varnothing , \{ab\}\}\\ \Gamma _3=\{\{ba\}\}\times \{\varnothing , \{ba\}\}\\ \Gamma _4=\{\{ac\}\}\times \{\varnothing , \{ac\}\}\\ \Gamma _5=\{\{ca\}\}\times \{\varnothing , \{ca\}\}\\ \Gamma _6=\{\{bc\}\}\times \{\varnothing , \{bc\}\}\\ \Gamma _7=\{\{cb\}\}\times \{\varnothing , \{cb\}\}\\ \Gamma _8=\{\{ab,ac\}\}\times \{\varnothing , \{ab\}, \{ac\}, \{ab,ac\}\}\\ \Gamma _{9}=\{\{ba,bc\}\}\times \{\varnothing , \{ba\}, \{bc\}, \{ba,bc\}\}\\ \Gamma _{10}=\{\{ca,cb\}\}\times \{\varnothing , \{ca\}, \{cb\}, \{ca,cb\}\}\\ \Gamma _{11}=\{\{ba,ca\}\}\times \{\varnothing , \{ba\}, \{ca\}, \{ba,ca\}\}\\ \Gamma _{12}=\{\{ab,cb\}\}\times \{\varnothing , \{ab\}, \{cb\}, \{ab,cb\}\} \\ \Gamma _{13}=\{\{ac,bc\}\}\times \{\varnothing , \{ac\}, \{bc\}, \{ac,bc\}\}\\ \Gamma _{14}=\{\{ab,bc\},\{ab,ac,bc\}\}\times \{\varnothing , \{ab\}, \{ac\}, \{bc\},\{ab,ac\},\{ab,bc\},\{ac,bc\},\{ab,ac,bc\}\} \\ \Gamma _{15}=\{\{ac,cb\},\{ab,ac,cb\}\}\times \{\varnothing , \{ab\}, \{ac\}, \{cb\},\{ab,ac\},\{ab,cb\},\{ac,cb\},\{ab,ac,cb\}\}\\ \Gamma _{16}=\{\{ca,bc\},\{ba,ca,bc\}\}\times \{\varnothing , \{ba\}, \{ca\}, \{bc\},\{ba,ca\},\{ba,bc\},\{ca,bc\},\{ba,ca,bc\}\}\\ \Gamma _{17}=\{\{ba,cb\},\{ba,ca,cb\}\}\times \{\varnothing , \{ba\}, \{ca\}, \{cb\},\{ba,ca\},\{ba,cb\},\{ca,cb\},\{ba,ca,cb\}\}\\ \Gamma _{18}=\{\{ab,ca\},\{ab,ca,cb\}\}\times \{\varnothing , \{ab\}, \{ca\}, \{cb\},\{ab,ca\},\{ab,cb\},\{ca,cb\},\{ab,ca,cb\}\}\\ \Gamma _{19}=\{\{ba,ac\},\{ba,ac,bc\}\}\times \{\varnothing , \{ba\}, \{ac\}, \{bc\},\{ba,ac\},\{ba,bc\},\{ac,bc\},\{ba,ac,bc\}\}\\ \Gamma _{20}=\{\{ba,ac,cb\}\}\times {\mathcal {G}}(N)\\ \Gamma _{21}=\{\{ab,ca,bc\}\}\times {\mathcal {G}}(N).\\ \end{array} \end{aligned}$$

A cumbersome computation shows that \(\{\Gamma _k\}_{k=1}^{21}\) is a partition of \(\Gamma\).

Let \({\mathcal {L}}(A)=\{q_1,q_2,q_3,q_4,q_5,q_6\}\), where, using standard notation, we have that

$$\begin{aligned} q_1=abc,\; q_2=acb,\; q_3=bac,\; q_4=bca,\; q_5=cab,\; q_6=cba. \end{aligned}$$

Let

$$\begin{aligned} {\mathcal {N}}=\left\{ {\tilde{n}}=(n_1,n_2,n_3,n_4,n_5,n_6)\in {\mathbb {N}}_0^6: \sum _{j=1}^6 n_j=n\right\} , \end{aligned}$$

and let \(S:{\mathcal {P}}\rightarrow {\mathcal {N}}\) be the surjective function defined, for every \(p\in {\mathcal {P}}\), by

$$\begin{aligned} S(p)=\Big (|\{i\in N: p(i)=q_1\}|,\ldots ,|\{i\in N: p(i)=q_6\}|\Big ). \end{aligned}$$

Given \(\lambda \in [0,1]\), let \(w(\lambda )=(1,\lambda ,0)\in {\mathfrak {W}}\) and \(F_{w(\lambda )}\) be the positional spc associated with the scoring vector \(w(\lambda )\). Consider now \(\nu \in {\mathbb {N}}\cap (\frac{n}{2},n]\). By definition of the set \(\Gamma\), for every \(p\in {\mathcal {P}}\), \(F_{w(\lambda )}(p)\subseteq M_{\nu }(p) \text{ if and only if } (R_{w(\lambda )}(p),\Sigma _{\nu} (p))\in \Gamma\), where \(R_{w(\lambda )}(p)\) and \(\Sigma _{\nu }(p)\) are defined in (4) and (1). Given now \({\tilde{n}}\in {\mathcal {N}}\), it is immediate to check that, for every \(p,p'\in S^{-1}({\tilde{n}})\), \(R_{w(\lambda )}(p)=R_{w(\lambda )}(p')\) and \(\Sigma _{\nu} (p)=\Sigma _{\nu} (p')\) (and then \(F_{w(\lambda )}(p)=F_{w(\lambda )}(p')\) and \(M_{\nu }(p)=M_{\nu }(p')\)). Thus, for every \({\tilde{n}}\in {\mathcal {N}}\), we can set

$$\begin{aligned} R_{w(\lambda )}({\tilde{n}})=R_{w(\lambda )}(p),\quad \Sigma _{\nu} ({\tilde{n}})=\Sigma _{\nu} (p), \quad F_{w(\lambda )}({\tilde{n}})=F_{w(\lambda )}(p),\quad M_{\nu} ({\tilde{n}})=M_{\nu} (p), \end{aligned}$$

where p is any element of \(S^{-1}({\tilde{n}})\). Such a definition is consistent since, as mentioned before, it does not depend on the element of \(S^{-1}({\tilde{n}})\) chosen.

Our purpose is to compute the number

$$\begin{aligned} \pi =\frac{\left| \left\{ {\tilde{n}}\in {\mathcal {N}}: (R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma \right\} \right| }{|{\mathcal {N}}|}, \end{aligned}$$

which corresponds to the probability to have a voting situation \({\tilde{n}}\) such that \(F_{w(\lambda )}({\tilde{n}})\subseteq M_{\nu }({\tilde{n}})\) provided that each voting situation has the same probability to be picked as assumed by IAC.

Since \(\{\Gamma _k\}_{k=1}^{21}\) is a partition of \(\Gamma\), we have that

$$\begin{aligned} \pi =\sum _{k=1}^{21}\pi _k, \end{aligned}$$

where

$$\begin{aligned} \pi _k=\frac{\left| \left\{ {\tilde{n}}\in {\mathcal {N}}: (R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _k\right\} \right| }{|{\mathcal {N}}|}, \end{aligned}$$

Let us consider now \(\psi \in {\mathrm{Sym}}(A)\), where \({\mathrm{Sym}}(A)\) is the set of permutations of the set A. For every \(q\in {\mathcal {L}}(A)\), let \(\psi q\in {\mathcal {L}}(A)\) be such that, for every \(x,y\in A\), \(\psi (x)\succ _{\psi q}\psi (y)\) if and only if \(x\succ _q y\). Thus, for instance, if \(q=acb\) and \(\psi =\begin{pmatrix}a&{}b&{}c\\ b&{}a&{}c\end{pmatrix}\), then \(\psi q= bca\). Any \(\psi \in {\mathrm{Sym}}(A)\) induces a bijection \(B_{\psi}\) from \({\mathcal {N}}\) to \({\mathcal {N}}\) defined, for every \({\tilde{n}}\in {\mathcal {N}}\), by

$$\begin{aligned} B_{\psi} (n_1,n_2,n_3,n_4,n_5,n_6)=(n'_1,n'_2,n'_3,n'_4,n'_5,n'_6), \end{aligned}$$

where, for every \(j\in \{1,\ldots ,6\}\), \(n'_j=n_{k}\) where \(\psi q_{k}=q_j\). For instance, if \(\psi =\begin{pmatrix}a&{}b&{}c\\ b&{}a&{}c\end{pmatrix}\), then

$$\begin{aligned} B_{\psi} (n_1,n_2,n_3,n_4,n_5,n_6)=(n_3,n_4,n_1,n_2,n_6,n_5). \end{aligned}$$

Assume now that applying \(\psi \in {\mathrm{Sym}}(A)\) to each component of all the elements of \(A^2\) involved in the definition of a certain \(\Gamma _k\) we obtain the set \(\Gamma _{k'}\) for a suitable \(k'\). It can be shown that

$$\begin{aligned} B_{\psi} \left( \left\{ {\tilde{n}}\in {\mathcal {N}}: (R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _k\right\} \right) =\left\{ {\tilde{n}}\in {\mathcal {N}}: (R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _{k'}\right\} , \end{aligned}$$

so that

$$\begin{aligned} \left| \left\{ {\tilde{n}}\in {\mathcal {N}}: (R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _k\right\} \right| = \left| \left\{ {\tilde{n}}\in {\mathcal {N}}: (R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _{k'}\right\} \right| \end{aligned}$$

and then \(\pi _k=\pi _{k'}\). That happens, for instance, considering \(\psi =\begin{pmatrix}a&{}b&{}c\\ b&{}a&{}c\end{pmatrix}\), \(\Gamma _2\) and \(\Gamma _3\).

Using that argument, we can deduce that \(\pi _2=\pi _3=\pi _4=\pi _5=\pi _6=\pi _7\), \(\pi _8=\pi _{9}=\pi _{10}\), \(\pi _{11}=\pi _{12}=\pi _{13}\), \(\pi _{14}=\pi _{15}=\pi _{16}=\pi _{17}=\pi _{18}=\pi _{19}\) and \(\pi _{20}=\pi _{21}\). Moreover, it is simple to show that \(R_{w(\lambda )}({\tilde{n}})\) cannot be a singleton, so that \(\pi _2=0\), and it cannot be a cycle, so that \(\pi _{20}=0\). As a consequence,

$$\begin{aligned} \pi =\pi _1+3\pi _8+3 \pi _{11}+6 \pi _{14}. \end{aligned}$$

Then we need to compute \(\pi _1\), \(\pi _{8}\), \(\pi _{11}\) and \(\pi _{14}\).

Fix now \({\tilde{n}}=(n_1,\ldots ,n_6)\in {\mathcal {N}}\). We have that \((R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _1\) if and only if \((n_1,\ldots ,n_6)\) is solution to the system

$$\begin{aligned} \left\{ \begin{array}{ll} n_1+n_2+\lambda n_3+\lambda n_5=n_3+n_4+\lambda n_1+\lambda n_6\\ n_1+n_2+\lambda n_3+\lambda n_5=n_5+n_6+\lambda n_2+\lambda n_4\\ n_1+n_2+n_5< \nu \\ n_3+n_4+n_6< \nu \\ n_1+n_2+n_3< \nu \\ n_4+n_5+n_6< \nu \\ n_1+n_3+n_4< \nu \\ n_2+n_5+n_6< \nu \\ n_j \ge 0\quad \forall j\in \{1,\ldots 6\}\\ \sum _{j=1}^{j=6}n_{j}=n \end{array} \right. \end{aligned}$$
(7)

\((R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _{8}\) if and only if \((n_1,\ldots ,n_6)\) is solution to the system

$$\begin{aligned} \left\{ \begin{array}{ll} n_1+n_2+\lambda n_3+\lambda n_5>n_3+n_4+\lambda n_1+\lambda n_6\\ n_1+n_2+\lambda n_3+\lambda n_5>n_5+n_6+\lambda n_2+\lambda n_4\\ n_3+n_4+\lambda n_1+\lambda n_6=n_5+n_6+\lambda n_2+\lambda n_4\\ n_3+n_4+n_6<\nu \\ n_4+n_5+n_6<\nu \\ n_1+n_3+n_4<\nu \\ n_2+n_5+n_6<\nu \\ n_j \ge 0 \quad \forall j\in \{1,\ldots 6\}\\ \sum _{j=1}^{j=6}n_{j}=n \end{array} \right. \end{aligned}$$
(8)

\((R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _{11}\) if and only if \((n_1,\ldots ,n_6)\) is solution to the system

$$\begin{aligned} \left\{ \begin{array}{ll} n_3+n_4+\lambda n_1+\lambda n_6>n_1+n_2+\lambda n_3+\lambda n_5\\ n_5+n_6+\lambda n_2+\lambda n_4>n_1+n_2+\lambda n_3+\lambda n_5\\ n_3+n_4+\lambda n_1+\lambda n_6=n_5+n_6+\lambda n_2+\lambda n_4\\ n_1+n_2+n_5<\nu \\ n_1+n_2+n_3<\nu \\ n_1+n_3+n_4<\nu \\ n_2+n_5+n_6<\nu \\ n_j \ge 0 \quad \forall j\in \{1,\ldots 6\}\\ \sum _{j=1}^{j=6}n_{j}=n \end{array} \right. \end{aligned}$$
(9)

\((R_{w(\lambda )}({\tilde{n}}),\Sigma _{\nu} ({\tilde{n}}))\in \Gamma _{14}\) if and only if \((n_1,\ldots ,n_6)\) is solution to the system

$$\begin{aligned} \left\{ \begin{array}{ll} n_1+n_2+\lambda n_3+\lambda n_5>n_3+n_4+\lambda n_1+\lambda n_6\\ n_3+n_4+\lambda n_1+\lambda n_6>n_5+n_6+\lambda n_2+\lambda n_4\\ n_3+n_4+n_6<\nu \\ n_2+n_5+n_6<\nu \\ n_4+n_5+n_6<\nu \\ n_j \ge 0 \quad \forall j\in \{1,\ldots 6\}\\ \sum _{j=1}^{j=6}n_{j}=n. \end{array} \right. \end{aligned}$$
(10)

From the analysis of the systems (7)–(10), we can compute the exact value of \(\pi _1\), \(\pi _{8}\), \(\pi _{11}\), and \(\pi _{14}\) by means of Ehrhart polynomials. That allows to get the exact value of \(\pi\). More exactly, we use the parametrized Barvinok’s algorithm (Barvinok, 1994; Barvinok & Pommersheim, 1999; Verdoolaege et al., 2004) in order to solve those systems.Footnote 10 We provide in what follows the pseudo-polynomials for the Borda spc. The number \(\left[ \frac{19}{4}, \frac{41}{8} \right] _n\), for instance, in the first validity domain of the pseudo-polynomial of system (7) is a 2-periodic coefficient, meaning that such a coefficient depends on the parity of the parameter n: the coefficient is equal to \(\frac{19}{4}\) for even n and to \(\frac{41}{8}\) for odd n. The pseudo-polynomials corresponding to the other spcs are available upon request.

  1. 1.

    System (7) for the Borda spc

    • Validity domain 1: \(2n -3\nu + 3 \ge 0\) and \(- n + 2\nu -2 \ge 0\)

      $$\begin{aligned}&-\frac{7}{8} n^3 + \left( 4 \nu -\frac{31}{8} \right) n^2 + \left( -6 \nu ^2 + 12 \nu - \left[ \frac{19}{4}, \frac{41}{8} \right] _n \right) n + 3 \nu ^3 -9 \nu ^2 + 8 \nu - \left[ 1, \frac{17}{8} \right] _n. \end{aligned}$$
    • Validity domain 2: \(-2n + 3\nu -4 \ge 0\)

      $$\begin{aligned}&\frac{1}{72} n^3 + \frac{1}{8} n^2 + \left[ \frac{7}{12} , \frac{5}{24} \right] _n n + \left[ 1, -\frac{25}{72} , \frac{11}{9}, -\frac{1}{8} , \frac{7}{9} , \frac{7}{72} \right] _n. \end{aligned}$$
  2. 2.

    Systems (8) and (9) for the Borda spc

    • Validity domain 1: \(- n + 2\nu -2 \ge 0\) and \(n -2\nu + 3 \ge 0\)

      $$\begin{aligned}&-\frac{5}{64} n^4 + \left( \frac{1}{3} \nu - \frac{11}{24} \right) n^3 + \left( -\frac{1}{2} \nu ^2 + \frac{3}{2} \nu - \left[ \frac{13}{16}, \frac{27}{32} \right] _n \right) n^2\\&+ \left( \frac{1}{3} \nu ^3 -\frac{3}{2} \nu ^2 + \frac{11}{6} \nu - \left[ \frac{5}{12}, \frac{13}{24} \right] _n \right) n \\&+ \left( -\frac{1}{12} \nu ^4 + \frac{1}{2} \nu ^3 -\frac{11}{12} \nu ^2 + \frac{1}{2} \nu + \left[ 0, -\frac{5}{64} \right] _n \right). \end{aligned}$$
    • Validity domain 2: \(2n -3\nu + 3 \ge 0\) and \(- n + 2\nu -4 \ge 0\)

      $$\begin{aligned}&\frac{29}{192} n^4 + \left( -\frac{4}{3} \nu + \frac{11}{12} \right) n^3 + \left( 4 \nu ^2 -6 \nu + \left[ \frac{85}{48}, \frac{167}{96} \right] _n \right) n^2 + \left( -5 \nu ^3 + 12 \nu ^2 -\frac{23}{3} \nu + \frac{13}{12} \right) n \\ &+ \frac{9}{4} \nu ^4 -\frac{15}{2} \nu ^3 + \frac{31}{4} \nu ^2 -\frac{5}{2} \nu + \left[ 0, \frac{7}{64} \right] _n. \end{aligned}$$
    • Validity domain 3: \(-2n + 3\nu -4 \ge 0\)

      $$\begin{aligned}&\frac{5}{1728} n^4 + \frac{1}{36} n^3 + \left[ \frac{5}{48}, \frac{7}{96} \right] _n n^2 + \left[ \frac{1}{12}, \frac{1}{108}, \frac{17}{108} \right] _n n + \left[ 0, -\frac{65}{576}, 0, \frac{7}{64}, -\frac{2}{9}, \frac{7}{64} \right] _n. \end{aligned}$$
  3. 3.

    System (10) for the Borda spc

    • Validity domain 1: \(n =2\) and \(\nu =2\)

      $$2.$$
    • Validity domain 2: \(n -2\nu + 2 \ge 0\) and \(2n -3\nu + 1 \ge 0\) and \(- n + 2\nu -1 \ge 0\)

      $$\begin{aligned}&-\frac{193}{4320} n^5 + \left( \frac{11}{36} \nu -\frac{437}{1728} \right) n^4 + \left( -\frac{5}{6} \nu ^2 + \frac{25}{18} \nu -\frac{707}{1296} \right) n^3 \\&+ \left( \frac{7}{6} \nu ^3 -\frac{11}{4} \nu ^2 + \frac{43}{18} \nu - \left[ \frac{73}{144}, \frac{137}{288} \right] _n \right) n^2 \\&+ \left( \frac{ -5}{6} \nu ^4 + \frac{5}{2} \nu ^3 -\frac{37}{12} \nu ^2 + \frac{7}{4} \nu + \left[ -\frac{23}{180}, \frac{41}{1440}, -\frac{29}{540}, \frac{41}{1440}, -\frac{23}{180}, \frac{443}{4320} \right] _n \right) n \\&+\frac{29}{120} \nu ^5 -\frac{7}{8} \nu ^4 + \frac{11}{8} \nu ^3 -\frac{9}{8} \nu ^2 + \left[ \frac{23}{60}, \frac{23}{60}, \frac{29}{180 }\right] _n \nu + \left[ 0, \frac{1505}{5184}, -\frac{2}{81}, \frac{17}{64}, \frac{2}{81}, \frac{1249}{5184} \right] _n. \end{aligned}$$
    • Validity domain 3: \(2n -3\nu + 2 = 0\) and \(\nu -4 \ge 0\)

      $$\begin{aligned}&\frac{27}{2560} \nu ^5 + \frac{57}{1024} \nu ^4 + \frac{13}{128} \nu ^3 + \left[ \frac{7}{64}, \frac{19}{256}, \frac{5}{128}, \frac{37}{256} \right] _{\nu} \nu ^2\\&+ \left[ -\frac{3}{40}, \frac{37}{640} \right] _{\nu} \nu + \left[ 0, \frac{7}{64}, -\frac{3}{64}, \frac{5}{32} \right] _{\nu}. \end{aligned}$$
    • Validity domain 4: \(-2n + 3\nu -3 \ge 0\)

      $$\begin{aligned}&\frac{1}{720} n^5 + \frac{31}{1728} n^4 + \frac{19}{216} n^3 + \left[ \frac{3}{16}, \frac{7}{32} \right] _n n^2 + \left[ \frac{1}{5}, \frac{727}{2160}, \frac{17}{135}, \frac{21}{80}, \frac{37}{135}, \frac{407}{2160} \right] _n n \\&+ \left[ 0, \frac{583}{1728}, -\frac{1}{27}, \frac{5}{64}, \frac{7}{27}, \frac{71}{1728} \right] _n. \end{aligned}$$
    • Validity domain 5: \(2n -3\nu + 1 \ge 0\) and \(- n + 2\nu -3 \ge 0\)

      $$\begin{aligned}&\frac{259}{2160} n^5 + \left( -\frac{10}{9} \nu + \frac{1183}{1728} \right) n^4 + \left( 4 \nu ^2 -\frac{46}{9} \nu + \frac{713}{648} \right) n^3 \\&+ \left( -7 \nu ^3 + 14 \nu ^2 -\frac{113}{18} \nu + \left[ \frac{35}{144}, \frac{79}{288} \right] _n \right) n^2 \\&+ \left( 6 \nu ^4 -\frac{33}{2} \nu ^3 + 12 \nu ^2 - \nu - \left[ \frac{31}{90}, \frac{203}{720}, \frac{73}{270}, \frac{203}{720}, \frac{31}{90}, \frac{449}{2160} \right] _n \right) n \\&-\frac{81}{40} \nu ^5 + \frac{57}{8} \nu ^4 -\frac{175}{24} \nu ^3 + \frac{11}{8} \nu ^2 + \left[ \frac{49}{60}, \frac{49}{60}, \frac{107}{180} \right] _n \nu + \left[ 0, \frac{533}{5184}, -\frac{2}{81}, \frac{5}{64}, \frac{2}{81}, \frac{277}{5184} \right] _n. \end{aligned}$$

For n individuals and three alternatives, it is well known that the number \(|{\mathcal {N}}|\) is given by the fifth-degree polynomial:

$$\begin{aligned} \frac{1}{120}n^{5}+ \frac{1}{8}n^{4}+\frac{17}{24}n^{3}+\frac{15}{8}n^{2}+\frac{137}{60}n+1. \end{aligned}$$

Taking into account the various validity domains, we have all the ingredients needed to calculate our probabilities. Note that the complexity of the pseudo-polynomials above makes the general mathematical representation for \(\pi\) not beautiful to present. This is because the number of validity domains and the length of the periodic numbers are high. Fortunately, when n is fixed, compact expressions can be found. Let us provide for instance the corresponding representation of \(\pi\) for the Borda spc with \(n=51\):Footnote 11

$$\begin{aligned} \pi = {\left\{ \begin{array}{ll} -\frac{27}{8488480}\nu ^5 +\frac{841}{1697696}\nu ^4 -\frac{463627}{15279264}\nu ^3+\frac{4628821}{5093088}\nu ^2 -\frac{24006551}{1818960}\nu +\frac{10130609}{136422}, &{} \text{for } 26\le \nu \le 34\\ 1, &{} \text{for } 35\le \nu \le 51. \end{array}\right. } \end{aligned}$$

Note finally that if we assume large electorates, that is when the total number of voters tends to infinity, replace \(\nu\) by rn in the results, and only consider the term of higher degree in n, we can find the probability that \(F_w\subseteq M_{\nu}\) for \(m=3\) and \(n\rightarrow \infty\) as a function of \(r=\frac{\nu }{n}\) for the three considered spcs. For instance, using the Ehrhart polynomials previously presented, we find the following function for the Borda spc:

$$\begin{aligned} \pi = {\left\{ \begin{array}{ll} \frac{259}{3}-800r+2880r^2-5040r^3+4320r^4-1458r^5, &{} \text{for } \frac{1}{2}< r<\frac{2}{3} \\ 1, &{} \text{for } \frac{2}{3}\le r\le 1. \end{array}\right. } \end{aligned}$$

The corresponding function for the plurality and the antiplurality spcs is given as follows:

$$\begin{aligned} \pi = {\left\{ \begin{array}{ll} -\frac{19}{3}+50r-180r^2+360r^3-360r^4+\frac{279}{2}r^5, &{} \text{for } \frac{1}{2}< r<\frac{2}{3} \\ 18r^5-90r^4+180r^3-180r^2+90r-17, &{} \text{for } \frac{2}{3}\le r\le 1. \end{array}\right. } \end{aligned}$$

Those functions are plotted on Fig. 3.

Appendix 2

Table 1 The exact probability that \(F_w\subseteq M_{\nu}\) for \(m=3\) and \(n=50/51\)
Table 2 The exact probability that \(F_w\subseteq M_{\nu}\) for \(m=3\) and \(n=100/101\)
Table 3 The exact probability that \(F_w\subseteq M_{\nu}\) for \(m=3\) and \(n=1000/1001\)
Table 4 The exact probability that \(F_w\subseteq M_{\nu}\) for \(m=3\) and \(n\rightarrow \infty\) as a function of \(r=\frac{\nu }{n}\)
Table 5 The simulated probability that \(F_w\subseteq M_{\nu}\) for \(m=4\) and \(n=50/51\)
Table 6 The simulated probability that \(F_w\subseteq M_{\nu}\) for \(m=4\) and \(n=100/101\)
Table 7 The simulated probability that \(F_w\subseteq M_{\nu}\) for \(m=4\) and \(n=1000/1001\)
Table 8 The simulated probability that \(F_w\subseteq M_{\nu}\) for \(m=4\) and \(n=10^6\) as a function of \(r=\frac{\nu }{n}\)
Table 9 The simulated probability that \(F_w\subseteq M\) for \(m=3\) and \(m=4\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diss, M., Gori, M. Majority properties of positional social preference correspondences. Theory Decis 92, 319–347 (2022). https://doi.org/10.1007/s11238-021-09828-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-021-09828-x

Keywords

Navigation