Skip to main content
Log in

Quasi-stationary social welfare functions

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

This paper examines collective decision-making with an infinite-time horizon setting. First, we establish a result on the collection of decisive sets: if there are at least four alternatives and Arrow’s axioms are satisfied on the selfish domain, then the collection of decisive sets forms an ultrafilter. Second, we impose generalized versions of stationarity axiom for social preferences, which are substantially weaker than the standard version. We show that if any of our generalized versions are satisfied in addition to Arrow’s axioms, then some generation is dictatorial. Moreover, we specify a very weak stationarity axiom that guarantees a possibility result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. See Arrow (1951, 1963, 2012).

  2. See Lauwers and Van Liedekerke (1995), Noguchi (2011), Cato (2013), and Takayama and Yokotani (2017).

  3. Svensson (1980) proves a possibility result by modifying the definition of continuity.

  4. An ordering is a transitive and complete binary relation. Transitivity requires that for all \({\mathbf{x}},\mathbf{y},{\mathbf{z}} \in X^\infty \), if \({\mathbf{x}} R_t{\mathbf{y}}\) and \({\mathbf{y}} R_t{\mathbf{z}}\), then \({\mathbf{x}} R_t{\mathbf{z}}\); completeness requires that, for all \({\mathbf{x}},{\mathbf{y}}\in X^\infty \), \({\mathbf{x}} R_t{\mathbf{y}}\) or \({\mathbf{y}} R_t{\mathbf{x}}\). Our definition of completeness implies reflexivity, which requires that, for all \({\mathbf{x}}\in X^\infty \), \({\mathbf{x}} R_t{\mathbf{x}}\). Cato (2016) discusses implications of completeness and transitivity. There is another way of defining completeness, see Bossert and Suzumura (2010).

  5. See Willard (1970) for basic results on filters and ultrafilters.

  6. When we consider utility representations, we assume that there exist the upper bound \({\overline{u}} \in {\mathbb {R}}\) and the lower bound \({\underline{u}} \in {\mathbb {R}}\) such that \({\overline{u}}>u_t(x_t)>{\underline{u}}\) for all \(t \in {\mathbb {N}}\) and all \(x \in X\). Another point is that we implicitly consider a mapping that assigns a utility function \(u_t\) to each preference \(\succsim _t\) (or \(R_t\)). That is, there is a function v such that \(u_t(x_t)=v(x_t;\succsim _t)\).

  7. Indeed, multi-profile stationarity imposes some priority only on the first generation and then even the second generation cannot have a decisive power.

  8. Packel (1980, p. 226, Theorem 4) provides a possibility result in his framework, which is different from ours. He introduces cardinal comparability of individual utilities, while we deal with ordinal utilities. Also, he drops Arrow’s axioms in his possibility result, while we impose these axioms in our possibility result.

References

  • Adachi, T., Cato, S., & Kamaga, K. (2014). Extended anonymity and Paretian relations on infinite utility streams. Mathematical Social Sciences, 72, 24–32.

    Article  Google Scholar 

  • Arrow, K. J. (1951). Social choice and individual values (1st ed.). New York: Wiley.

    Google Scholar 

  • Arrow, K. J. (1963). Social choice and individual values with ‘Notes on the theory of social choice’ (2nd ed.). New York: Wiley.

    Google Scholar 

  • Arrow, K. J. (2012). Social choice and individual values with ‘Foreword to the third edition’ by Eric Maskin (3rd ed.). New Haven: Yale University Press.

    Google Scholar 

  • Asheim, G. B., Mitra, T., & Tungodden, B. (2012). Sustainable recursive social welfare functions. Economic Theory, 49(2), 267–292.

    Article  Google Scholar 

  • Basu, K., & Mitra, T. (2003). Aggregating infinite utility streams with intergenerational equity: The impossibility of being Paretian. Econometrica, 71(5), 1557–1563.

    Article  Google Scholar 

  • Basu, K., & Mitra, T. (2007). Utilitarianism for infinite utility streams: A new welfare criterion and its axiomatic characterization. Journal of Economic Theory, 133(1), 350–373.

    Article  Google Scholar 

  • Beals, R., & Koopmans, T. C. (1969). Maximizing stationary utility in a constant technology. SIAM Journal on Applied Mathematics, 17(5), 1001–1015.

    Article  Google Scholar 

  • Bossert, W., & Suzumura, K. (2010). Consistency, choice, and rationality. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Bossert, W., & Suzumura, K. (2011). Multi-profile intergenerational social choice. Social Choice and Welfare, 37(3), 493–509.

    Article  Google Scholar 

  • Cato, S. (2013). Quasi-decisiveness, quasi-ultrafilter, and social quasi-orderings. Social Choice and Welfare, 41(1), 169–202.

    Article  Google Scholar 

  • Cato, S. (2016). Rationality and operators: The formal structure of preferences. Singapore: Springer.

    Book  Google Scholar 

  • Cato, S. (2017). Unanimity, anonymity, and infinite population. Journal of Mathematical Economics, 71, 28–35.

    Article  Google Scholar 

  • Diamond, P. A. (1965). The evaluation of infinite utility streams. Econometrica, 33(1), 170–177.

    Article  Google Scholar 

  • Dutta, P. K. (1991). What do discounted optima converge to? A theory of discount rate asymptotics in economic models. Journal of Economic Theory, 55(1), 64–94.

    Article  Google Scholar 

  • Ferejohn, J., & Page, T. (1978). On the foundations of intertemporal choice. American Journal of Agricultural Economics, 60(2), 269–275.

    Article  Google Scholar 

  • Fishburn, P. C. (1970). Arrow’s impossibility theorem: Concise proof and infinite voters. Journal of Economic Theory, 2(1), 103–106.

    Article  Google Scholar 

  • Fleurbaey, M., & Michel, P. (2003). Intertemporal equity and the extension of the Ramsey criterion. Journal of Mathematical Economics, 39(7), 777–802.

    Article  Google Scholar 

  • Frederick, S., Loewenstein, G., & O’donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351–401.

    Article  Google Scholar 

  • Gomberg, A., Martinelli, C., & Torres, R. (2005). Anonymity in large societies. Social Choice and Welfare, 25(1), 187–205.

    Article  Google Scholar 

  • Hansson, B. (1976). The existence of group preference functions. Public Choice, 28(1), 89–98.

    Article  Google Scholar 

  • Hayashi, T. (2003). Quasi-stationary cardinal utility and present bias. Journal of Economic Theory, 112(2), 343–352.

    Article  Google Scholar 

  • Iwai, K. (1972). Optimal economic growth and stationary ordinal utility: A fisherian approach. Journal of Economic Theory, 5(1), 121–151.

    Article  Google Scholar 

  • Kamaga, K., & Kojima, T. (2009). \({{\cal{Q}}}\)-anonymous social welfare relations on infinite utility streams. Social Choice and Welfare, 33(3), 405–413.

    Article  Google Scholar 

  • Kamaga, K., & Kojima, T. (2010). On the leximin and utilitarian overtaking criteria with extended anonymity. Social Choice and Welfare, 35(3), 377–392.

    Article  Google Scholar 

  • Kirman, A. P., & Sondermann, D. (1972). Arrow’s theorem, many agents, and invisible dictators. Journal of Economic Theory, 5(2), 267–277.

    Article  Google Scholar 

  • Koopmans, T. C. (1960). Stationary ordinal utility and impatience. Econometrica, 28(2), 287–309.

    Article  Google Scholar 

  • Lauwers, L., & Van Liedekerke, L. (1995). Ultraproducts and aggregation. Journal of Mathematical Economics, 24(3), 217–237.

    Article  Google Scholar 

  • Mihara, H. R. (1997a). Arrow’s theorem and Turing computability. Economic Theory, 10(2), 257–276.

    Article  Google Scholar 

  • Mihara, H. R. (1997b). Anonymity and neutrality in Arrow’s Theorem with restricted coalition algebras. Social Choice and Welfare, 14(4), 503–512.

    Article  Google Scholar 

  • Noguchi, M. (2011). Generic impossibility of Arrow’s impossibility theorem. Journal of Mathematical Economics, 47, 391–400.

    Article  Google Scholar 

  • Packel, E. (1980). Impossibility results in the axiomatic theory of intertemporal choice. Public Choice, 35(2), 219–227.

    Article  Google Scholar 

  • Phelps, E. S., & Pollak, R. A. (1968). On second-best national saving and game-equilibrium growth. The Review of Economic Studies, 35(2), 185–199.

    Article  Google Scholar 

  • Sakai, T. (2006). Equitable intergenerational preferences on restricted domains. Social Choice and Welfare, 27(1), 41–54.

    Article  Google Scholar 

  • Salonen, H., & Saukkonen, K. (2005). On continuity of Arrovian social welfare functions. Social Choice and Welfare, 25(1), 85–93.

    Article  Google Scholar 

  • Samuelson, P. A. (1937). A note on measurement of utility. The Review of Economic Studies, 4(2), 155–161.

    Article  Google Scholar 

  • Saukkonen, K. (2007). Continuity of social choice functions with restricted coalition algebras. Social Choice and Welfare, 28(4), 637–647.

    Article  Google Scholar 

  • Sen, A. (1969). Quasi-transitivity, rational choice and collective decisions. Rev Econ Stud, 36(3), 381–393.

    Article  Google Scholar 

  • Sen, A. K. (1995). Rationality and social choice. American Economic Review, 85, 1–24.

    Google Scholar 

  • Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization. The Review of Economic Studies, 23(3), 165–180.

    Article  Google Scholar 

  • Svensson, L. G. (1980). Equity among generations. Econometrica, 84(5), 1251–1256.

    Article  Google Scholar 

  • Takayama, S., & Yokotani, A. (2017). Social choice correspondences with infinitely many agents: Serial dictatorship. Social Choice and Welfare, 48(3), 573–598.

    Article  Google Scholar 

  • Willard, S. (1970). General Topology. Reading: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Cato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I thank an anonymous reviewer for valuable comments and suggestions. This work was financially supported by JSPS KAKENHI (18K01501).

Appendix

Appendix

1.1 Proof of Theorem 2

Lemma 1

Suppose that\(|X| \ge 4\)and a social welfare functionfsatisfies selfish domain, weak Pareto, and independence of irrelevant alternatives. If a set\(T \subseteq {\mathbb {N}}\)is decisive over some ordered pairs\(({\mathbf{x}},{\mathbf{y}})\), thenTis decisive over all distinct pairs.

Proof

Suppose that a set \(T \subseteq {\mathbb {N}}\) is decisive over \(({\mathbf{x}},{\mathbf{y}})\). We will show that T is decisive over all distinct pairs \(({\mathbf{w}},{\mathbf{z}})\).

(i) We show \(T \subseteq {\mathbb {N}}\) is decisive over \((\mathbf{y},{\mathbf{z}})\) (\({\mathbf{z}} \ne {\mathbf{x}},{\mathbf{y}}\)). Note that it can be the case that \(y_t=z_t\) or \(x_t=z_t\) for some \(t \in {\mathbb {N}}\). Consider \({\mathbf{w}} \in X^{\infty }\) such that

$$\begin{aligned} w_t \in X {\setminus } \{ x_t,y_t,z_t \} \text{ for } \text{ all } t \in {\mathbb {N}}. \end{aligned}$$

Let \({\mathbf {R}} \in {\mathcal {R}}_S^\infty \) be such that

$$\begin{aligned} {\mathbf{x}} P(R_t){\mathbf{y}} P(R_t) {\mathbf{w}}&\text{ for } \text{ all } t \in T,\\ {\mathbf{y}}P(R_t) {\mathbf{w}}&\text{ for } \text{ all } t \in {\mathbb {N}}{\setminus } T. \end{aligned}$$

Since T is decisive over \(({\mathbf{x}},{\mathbf{y}})\), it follows that \({\mathbf{x}}P(f({\mathbf {R}})) {\mathbf{y}}\). Weak Pareto implies that \(\mathbf{y} P(f({\mathbf {R}})) {\mathbf{w}}\). By the transitivity of \(f({\mathbf {R}})\), we have \({\mathbf{x}} P(f({\mathbf {R}})) {\mathbf{w}}\). Since the preferences of individuals outside of T over \({\mathbf{x}}\) and \({\mathbf{w}}\) are not specified, independence of irrelevant alternatives implies that T is decisive over \(({\mathbf{x}},{\mathbf{w}})\).

Let \({\mathbf {R}}' \in {\mathcal {R}}_S^\infty \) be such that

$$\begin{aligned} {\mathbf{x}} P(R'_t){\mathbf{w}} P(R'_t) {\mathbf{z}}&\text{ for } \text{ all } t \in T,\\ {\mathbf{x}}P(R'_t) {\mathbf{w}}&\text{ for } \text{ all } t \in {\mathbb {N}}{\setminus } T. \end{aligned}$$

Since T is decisive over \(({\mathbf{x}},{\mathbf{w}})\), it follows that \({\mathbf{x}}P(f({\mathbf {R}}')) {\mathbf{w}}\). Weak Pareto implies that \(\mathbf{w} P(f({\mathbf {R}}')) {\mathbf{z}}\). By the transitivity of \(f({\mathbf {R}}')\), we have \({\mathbf{x}} P(f({\mathbf {R}}')) {\mathbf{z}}\). Since the preferences of individuals outside of T over \({\mathbf{x}}\) and \({\mathbf{z}}\) are not specified, independence of irrelevant alternatives implies that T is decisive over \(({\mathbf{x}},{\mathbf{z}})\).

Let \({\mathbf {R}}'' \in {\mathcal {R}}_S^\infty \) be such that

$$\begin{aligned} {\mathbf{w}} P(R''_t){\mathbf{x}} P(R''_t) {\mathbf{z}}&\text{ for } \text{ all } t \in T,\\ {\mathbf{w}}P(R''_t) {\mathbf{x}}&\text{ for } \text{ all } t \in {\mathbb {N}}{\setminus } T. \end{aligned}$$

Since T is decisive over \(({\mathbf{x}},{\mathbf{z}})\), it follows that \({\mathbf{x}}P(f({\mathbf {R}}'')) {\mathbf{z}}\). Weak Pareto implies that \({\mathbf{w}} P(f({\mathbf {R}}'')) {\mathbf{x}}\). By the transitivity of \(f({\mathbf {R}}'')\), we have \({\mathbf{w}} P(f({\mathbf {R}}'')) {\mathbf{z}}\). Since the preferences of individuals outside of T over \({\mathbf{w}}\) and \({\mathbf{z}}\) are not specified, independence of irrelevant alternatives implies that T is decisive over \(({\mathbf{w}},{\mathbf{z}})\).

Let \({\mathbf {R}}''' \in {\mathcal {R}}_S^\infty \) be such that

$$\begin{aligned} {\mathbf{y}} P(R''_t){\mathbf{w}} P(R''_t) {\mathbf{z}}&\text{ for } \text{ all } t \in T,\\ {\mathbf{y}}P(R''_t) {\mathbf{w}}&\text{ for } \text{ all } t \in {\mathbb {N}}{\setminus } T. \end{aligned}$$

Since T is decisive over \(({\mathbf{w}},{\mathbf{z}})\), it follows that \({\mathbf{w}}P(f({\mathbf {R}}'')) {\mathbf{z}}\). Weak Pareto implies that \({\mathbf{y}} P(f({\mathbf {R}}'')) {\mathbf{w}}\). By the transitivity of \(f({\mathbf {R}}'')\), we have \({\mathbf{y}} P(f({\mathbf {R}}'')) {\mathbf{z}}\). Since the preferences of individuals outside of T over \({\mathbf{y}}\) and \({\mathbf{z}}\) are not specified, independence of irrelevant alternatives implies that T is decisive over \(({\mathbf{y}},{\mathbf{z}})\).

(ii) We show \(T \subseteq {\mathbb {N}}\) is decisive over \((\mathbf{y},{\mathbf{x}})\). Take \({\mathbf{z}} \ne {\mathbf{x}},{\mathbf{y}}\). From (i), \(T \subseteq {\mathbb {N}}\) is decisive over \(({\mathbf{y}},{\mathbf{z}})\). Consider \({\mathbf{w}} \in X^{\infty }\) such that

$$\begin{aligned} w_t \in X {\setminus } \{ x_t,y_t,z_t \} \text{ for } \text{ all } t \in {\mathbb {N}}. \end{aligned}$$

Let \({\mathbf {R}} \in {\mathcal {R}}_S^\infty \) be such that

$$\begin{aligned} {\mathbf{y}} P(R_t){\mathbf{z}} P(R_t) {\mathbf{w}}&\text{ for } \text{ all } t \in T,\\ {\mathbf{z}}P(R_t) {\mathbf{w}}&\text{ for } \text{ all } t \in {\mathbb {N}}{\setminus } T. \end{aligned}$$

Since T is decisive over \(({\mathbf{y}},{\mathbf{z}})\), it follows that \({\mathbf{y}}P(f({\mathbf {R}})) {\mathbf{z}}\). Weak Pareto implies that \(\mathbf{z} P(f({\mathbf {R}})) {\mathbf{w}}\). By the transitivity of \(f({\mathbf {R}})\), we have \({\mathbf{y}} P(f({\mathbf {R}})) {\mathbf{w}}\). Since the preferences of individuals outside of T over \({\mathbf{y}}\) and \({\mathbf{w}}\) are not specified, independence of irrelevant alternatives implies that T is decisive over \(({\mathbf{y}},{\mathbf{w}})\).

Let \({\mathbf {R}}' \in {\mathcal {R}}_S^\infty \) be such that

$$\begin{aligned} {\mathbf{y}} P(R'_t){\mathbf{w}} P(R'_t) {\mathbf{x}}&\text{ for } \text{ all } t \in T,\\ {\mathbf{w}}P(R'_t) {\mathbf{x}}&\text{ for } \text{ all } t \in {\mathbb {N}}{\setminus } T. \end{aligned}$$

Since T is decisive over \(({\mathbf{y}},{\mathbf{w}})\), it follows that \({\mathbf{y}}P(f({\mathbf {R}}')) {\mathbf{w}}\). Weak Pareto implies that \(\mathbf{w} P(f({\mathbf {R}}')) {\mathbf{x}}\). By the transitivity of \(f({\mathbf {R}}')\), we have \({\mathbf{y}} P(f({\mathbf {R}}')) {\mathbf{x}}\). Since the preferences of individuals outside of T over \({\mathbf{x}}\) and \({\mathbf{y}}\) are not specified, independence of irrelevant alternatives implies that T is decisive over \(({\mathbf{y}},{\mathbf{x}})\).

(iii) From (i) and (ii), we have the following:

$$\begin{aligned}{}[T \text{ is } \text{ decisive } \text{ over } ({\mathbf{x}},{\mathbf{y}})] \Rightarrow [T \text{ is } \text{ decisive } \text{ over } ({\mathbf{y}},{\mathbf{z}})]. \end{aligned}$$

By repeating the same argument, we have

$$\begin{aligned}{}[T \text{ is } \text{ decisive } \text{ over } ({\mathbf{y}},{\mathbf{z}})] \Rightarrow [T \text{ is } \text{ decisive } \text{ over } ({\mathbf{z}},{\mathbf{w}})]. \end{aligned}$$

Then T is decisive over all distinct pairs \(({\mathbf{w}},{\mathbf{z}})\). The proof is complete. \(\square \)

Proof of Theorem 2

(U1) and (U2) directly follow from weak Pareto and the definition of decisiveness. Thus, it suffices to show (U3) and (U4).

(U3) Suppose that \(T,T' \in {\mathcal {T}}(f)\). Choose any triple \({\mathbf{x}},{\mathbf{y}},{\mathbf{z}} \in X^\infty \) such that \(x_t,y_t,z_t\) are distinct for all \(t \in {\mathbb {N}}\). Since there exist at least four per-period outcomes, this pair exists. Let \({\mathbf {R}} \in {\mathcal {R}}_S^\infty \) be such that

$$\begin{aligned} {\mathbf{x}} P(R_t){\mathbf{y}}&\text{ for } \text{ all } t \in T {\setminus } T',\\ {\mathbf{x}} P(R_t) {\mathbf{y}} P(R_t) {\mathbf{z}}&\text{ for } \text{ all } t \in T \cap T',\\ {\mathbf{y}}P(R_t) {\mathbf{z}}&\text{ for } \text{ all } t \in T' {\setminus } T. \end{aligned}$$

Since \(T \in {\mathcal {T}}(f)\) and \({\mathbf{x}} P(R_t){\mathbf{y}}\) for all \(t \in T\), we have \( {\mathbf{x}} P(f({\mathbf {R}})) {\mathbf{y}}\). Since \(T' \in \Omega (F)\) and \({\mathbf{y}}P(R_t) {\mathbf{z}}\) for all \(t \in T'\), we have \({\mathbf{y}} P(f({\mathbf {R}})) {\mathbf{z}}\). By the transitivity of \(f({\mathbf {R}})\), \( {\mathbf{x}} P(f({\mathbf {R}})) {\mathbf{z}}\). Since the preferences of individuals outside of \(T \cap T'\) over \({\mathbf{x}}\) and \({\mathbf{z}}\) are not specified, independence of irrelevant alternatives implies that \(T \cap T'\) is decisive over \(({\mathbf{x}},{\mathbf{z}})\). By Lemma 1, \(T \cap T' \in {\mathcal {T}}(f)\).

(U4) Suppose that \(T \notin {\mathcal {T}}(f)\). Then, there exists a profile \({\mathbf {R}} \in {\mathcal {R}}_S^{\infty }\) and \({\mathbf{x}},{\mathbf{y}} \in X^\infty \) such that \({\mathbf{x}} P(R_t){\mathbf{y}}\) for all \(t \in T\) and \( {\mathbf{y}} f({\mathbf {R}}) {\mathbf{x}}\). Let \({\mathbf {R}}' \in {\mathcal {R}}_S^{\infty }\) be such that

$$\begin{aligned}&{\mathbf {R}}|_{\{ {\mathbf{x}}, {\mathbf{y}}\}} = {\mathbf {R}}'|_{\{ {\mathbf{x}}, {\mathbf{y}}\}},\\&{\mathbf{x}}P(R_t') {\mathbf{z}} \text{ for } \text{ all } t \in {\mathbb {N}}. \end{aligned}$$

Independence of irrelevant alternatives implies that \( {\mathbf{y}} f({\mathbf {R}}') {\mathbf{x}} \), and weak Pareto implies that \( {\mathbf{x}} P(f({\mathbf {R}}')) {\mathbf{z}} \). By the transitivity of \(f({\mathbf {R}}')\), we have \( {\mathbf{y}} P(f({\mathbf {R}}')) {\mathbf{z}}\). Since the preferences of individuals outside of \({\mathbb {N}} {\setminus } T\) over \({\mathbf{y}}\) and \({\mathbf{z}}\) are not specified, independence of irrelevant alternatives implies that \(T \subseteq {\mathbb {N}}\) is decisive over \(({\mathbf{y}},{\mathbf{z}})\), By Lemma 1, \({\mathbb {N}} {\setminus } T \in \mathcal{T}(f)\). \(\square \)

1.2 Proof of Theorem 3

To prove Theorem 3, we first establish two lemmas, which might be insightful in themselves.

Lemma 2

If a social welfare functionfsatisfies selfish domain and quasi-multi-profile stationarity, then\(\{4,6,8,\ldots \} \notin {\mathcal {T}}(f)\).

Proof

Let f be a social welfare function satisfying selfish domain and quasi-multi-profile stationarity. Also, let x and y be two distinct elements of X, and \(\succsim \) be an ordering on X such that \(x \succ y \). By selfish domain, we can define a profile \({\mathbf {R}} \in {\mathcal {R}}_S^\infty \) by letting, for all \( t \in N\) and for all \({\mathbf{x}}, {\mathbf{y}} \in X^\infty \),

$$\begin{aligned} {\mathbf{x}} R_t {\mathbf{y}} \Leftrightarrow x_t \succsim y_t. \end{aligned}$$

Now, take the following streams:

$$\begin{aligned}&{\mathbf{a}}=(y,x,y,x,y,x,\ldots ),\\&{\mathbf{b}}=(y,y,x,y,x,y,x,\ldots )=(y, {\mathbf {a}}),\\&{\mathbf{c}}=(y,y,y,x,y,x,y,x,\ldots )=(y, {\mathbf {b}}). \end{aligned}$$

Suppose that \(\{4,6,8,\ldots \} \in {\mathcal {T}}(f)\). Since \(\{t \in {\mathbb {N}}| {\mathbf{c }} P(R_t) {\mathbf{b}}\} = \{4,6,8,\ldots \}\), we have

$$\begin{aligned} {\mathbf{c}} P(f({\mathbf {R}})){\mathbf{b}}. \end{aligned}$$

Since \(b_1=c_1\) and \(b_2=c_2\), quasi-multi-profile stationarity implies that

$$\begin{aligned} {\mathbf{b}} f({\mathbf {R}}_{\ge 2}){\mathbf{a}} \Leftrightarrow {\mathbf{c}} f({\mathbf {R}}){\mathbf{b}}. \end{aligned}$$

Then \({\mathbf{c}} P(f({\mathbf {R}})){\mathbf{b}} \Leftrightarrow {\mathbf{b}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{a}}\). We obtain \({\mathbf{b}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{a}}\). However, since \(\{2, 4,6,8,\ldots \} \in {\mathcal {T}}(f)\), it follows that

$$\begin{aligned} {\mathbf{a}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{b}}. \end{aligned}$$

This is a contradiction. \(\square \)

Lemma 3

If a social welfare functionfsatisfies selfish domain and quasi-multi-profile stationarity, then\(\{3,5,7,\ldots \} \notin {\mathcal {T}}(f)\).

Proof

Let f be a social welfare function satisfying selfish domain and quasi-multi-profile stationarity. Also, let x and y be two distinct elements of X and \(\succsim \) be an ordering on X such that \(x \succ y \). By selfish domain, we can consider a profile \({\mathbf {R}} \in {\mathcal {R}}^\infty \) by letting, for all \( t \in N\) and for all \({\mathbf{x}}, {\mathbf{y}} \in X^\infty \),

$$\begin{aligned} {\mathbf{x}} R_t {\mathbf{y}} \Leftrightarrow x_t \succsim y_t. \end{aligned}$$

Now, take the following streams:

$$\begin{aligned}&{\mathbf{a}}=(y,x,y,x,y,x,\ldots ),\\&{\mathbf{b}}=(y,y,x,y,x,y,x,\ldots )=(y, {\mathbf {a}}),\\&{\mathbf{c}}=(y,y,y,x,y,x,y,x,\ldots )=(y, {\mathbf {b}}). \end{aligned}$$

Suppose that \(\{3,5,7,\ldots \} \in {\mathcal {T}}(f)\). Since \(\{t \in {\mathbb {N}}| {\mathbf{b }} P(R_t) {\mathbf{c}}\} = \{3,5,7,\ldots \}\), we have

$$\begin{aligned} {\mathbf{b}} P(f({\mathbf {R}})){\mathbf{c}}. \end{aligned}$$

Note that \(b_1=c_1\) and \(b_2=c_2\). By quasi-multi-profile stationarity, we have

$$\begin{aligned} {\mathbf{a}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{b}} \Leftrightarrow {\mathbf{b}} P(f({\mathbf {R}})){\mathbf{c}}. \end{aligned}$$

Then we have \({\mathbf{a}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{b}}\). However, since \(\{3, 5,7,9,\ldots \} \in {\mathcal {T}}(f)\), it follows that

$$\begin{aligned} {\mathbf{b}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{a}}. \end{aligned}$$

This is a contradiction. \(\square \)

Theorem 2 and Lemmas 2 and 3 together imply the following result.

Lemma 4

Suppose that\(|X| \ge 4\). If a social welfare functionfsatisfies selfish domain, weak Pareto, independence of irrelevant alternatives and quasi-multi-profile stationarity, then\(\{1,2\} \in {\mathcal {T}}(f)\).

Proof

Let f be a social welfare function satisfying selfish domain, weak Pareto, independence of irrelevant alternatives and quasi-multi-profile stationarity. By Theorem 2, the family \({\mathcal {T}}(f)\) of decisive sets forms an ultrafilter on \({\mathbb {N}}\).

By Lemma 2, \(\{4,6,8,\ldots \} \notin {\mathcal {T}}(f)\). From (U4) of an ultrafilter, it follows that

$$\begin{aligned} {\mathbb {N}} {\setminus } \{4,6,8,\ldots \} \in {\mathcal {T}}(f). \end{aligned}$$
(2)

By Lemma 3, \(\{3,5,7,\ldots \} \notin {\mathcal {T}}(f)\). From (U4) of an ultrafilter, it follows that

$$\begin{aligned} {\mathbb {N}} {\setminus } \{3,5,7,\ldots \} \in {\mathcal {T}}(f). \end{aligned}$$
(3)

From (2), (3), and (U3) of an ultrafilter, it follows that

$$\begin{aligned} ({\mathbb {N}} {\setminus } \{4,6,8,\ldots \}) \cap ({\mathbb {N}} {\setminus } \{3,5,7,\ldots \})=\{1,2\} \in {\mathcal {T}}(f). \end{aligned}$$

\(\square \)

Proof of Theorem 3

Assume that \(\{ 1 \} \notin {\mathcal {T}}(f)\) and \(\{ 2 \} \notin {\mathcal {T}}(f)\). From (U4) of an ultrafilter, it follows that

$$\begin{aligned} {\mathbb {N}} {\setminus } \{1\} \in {\mathcal {T}}(f) \text{ and } {\mathbb {N}} {\setminus } \{2\} \in {\mathcal {T}}(f). \end{aligned}$$
(4)

By Lemma 4,

$$\begin{aligned} \{1,2\} \in {\mathcal {T}}(f) . \end{aligned}$$
(5)

By (4), (5), and (U3) of an ultrafilter, it follows that

$$\begin{aligned} ({\mathbb {N}} {\setminus } \{1\}) \cap ({\mathbb {N}} {\setminus } \{ 2 \}) \cap \{1,2\} \in {\mathcal {T}}(f). \end{aligned}$$

This contradicts (U1) of an ultrafilter. \(\square \)

1.3 Proof of Theorem 4

Lemma 5

If a social welfare functionfsatisfies selfish domain and\(\tau \)-quasi-multi-profile stationarity, then\(\{\tau +2,\tau +4,\tau +6,\ldots \} \notin {\mathcal {T}}(f)\).

Proof

Let f be a social welfare function satisfying selfish domain and T-quasi-multi-profile stationarity. Also, let x and y be two distinct elements of X and \(\succsim \) be an ordering on X such that \(x \succ y \). With selfish domain, we can consider a profile \({\mathbf {R}} \in {\mathcal {R}}^\infty \) by letting, for all \( t \in N\) and for all \({\mathbf{x}}, {\mathbf{y}} \in X^\infty \),

$$\begin{aligned} {\mathbf{x}} R_t {\mathbf{y}} \Leftrightarrow x_t \succsim y_t. \end{aligned}$$

Now, take the following streams:

$$\begin{aligned}&{\mathbf{a}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau -1},x,y,x,y,x,\ldots ),\\&{\mathbf{b}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau },x,y,x,y,x,\ldots )=(y, {\mathbf {a}}),\\&{\mathbf{c}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau },y,x,y,x,y,x,\ldots )=(y, {\mathbf {b}}). \end{aligned}$$

Suppose that \(\{\tau +2,\tau +4,\tau +6,\ldots \} \in {\mathcal {T}}(f)\). Since \(\{t \in {\mathbb {N}}| {\mathbf{c }} P(R_t) {\mathbf{b}}\} = \{\tau +2,\tau +4,\tau +6,\ldots \}\), we have

$$\begin{aligned} {\mathbf{c}} P(f({\mathbf {R}})){\mathbf{b}}. \end{aligned}$$

Since \(b_t=c_t\) for all \(t \le \tau \), \(\tau \)-quasi-multi-profile stationarity implies that

$$\begin{aligned} {\mathbf{b}} f({\mathbf {R}}_{\ge 2}){\mathbf{a}} \Leftrightarrow {\mathbf{c}} f({\mathbf {R}}){\mathbf{b}}. \end{aligned}$$

Then \({\mathbf{c}} P(f({\mathbf {R}})){\mathbf{b}} \Leftrightarrow {\mathbf{b}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{a}}\). We obtain \({\mathbf{b}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{a}}\). However, since \(\{\tau +2,\tau +4,\tau +6,\ldots \} \in {\mathcal {T}}(f)\),

$$\begin{aligned} {\mathbf{a}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{b}}. \end{aligned}$$

This is a contradiction. \(\square \)

Lemma 6

If a social welfare functionfsatisfies selfish domain and\(\tau \)-quasi-multi-profile stationarity, then\(\{\tau +1,\tau +3,\tau +5,\ldots \} \notin {\mathcal {T}}(f)\).

Proof

Let f be a social welfare function satisfying selfish domain and \(\tau \)-quasi-multi-profile stationarity. Also, let x and y be two distinct elements of X and \(\succsim \) be an ordering on X such that \(x \succ y \). With selfish domain, we can consider a profile \({\mathbf {R}} \in {\mathcal {R}}^\infty \) by letting, for all \( t \in N\) and for all \({\mathbf{x}}, {\mathbf{y}} \in X^\infty \),

$$\begin{aligned} {\mathbf{x}} R_t {\mathbf{y}} \Leftrightarrow x_t \succsim y_t. \end{aligned}$$

Now, take the following streams:

$$\begin{aligned}&{\mathbf{a}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau -1},x,y,x,y,x,\ldots ),\\&{\mathbf{b}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau },x,y,x,y,x,\ldots )=(y, {\mathbf {a}}),\\&{\mathbf{c}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau },y,x,y,x,y,x,\ldots )=(y, {\mathbf {b}}). \end{aligned}$$

Suppose that \(\{\tau +1,\tau +3,\tau +5,\ldots \} \in {\mathcal {T}}(f)\). Since \(\{t \in {\mathbb {N}}| {\mathbf{b }} P(R_t) {\mathbf{c}}\} = \{\tau +1,\tau +3,\tau +5,\ldots \}\), we have the following:

$$\begin{aligned} {\mathbf{b}} P(f({\mathbf {R}})){\mathbf{c}}. \end{aligned}$$

Note that \(b_t=c_t\) for all \(t \le \tau \). By \(\tau \)-quasi-multi-profile stationarity, we have

$$\begin{aligned} {\mathbf{a}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{b}} \Leftrightarrow {\mathbf{b}} P(f({\mathbf {R}})){\mathbf{c}}. \end{aligned}$$

Then we have \({\mathbf{a}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{b}}\). However, \(\{\tau +1,\tau +3,\tau +5,\ldots \} \in {\mathcal {T}}(f)\),

$$\begin{aligned} {\mathbf{b}} P(f({\mathbf {R}}_{\ge 2})){\mathbf{a}}. \end{aligned}$$

This is a contradiction. \(\square \)

Lemma 7

If a social welfare functionfsatisfies selfish domain, weak Pareto, independence of irrelevant alternatives, and\(\tau \)-quasi-multi-profile stationarity, then\(\{1,2,\ldots , \tau \} \in {\mathcal {T}}(f)\).

Proof

Let f be a social welfare function satisfying selfish domain, weak Pareto, independence of irrelevant alternatives, and quasi-multi-profile stationarity. By Theorem 2, the family \({\mathcal {T}}(f)\) of decisive sets forms an ultrafilter on \({\mathbb {N}}\).

By Lemma 5, \(\{T+2,T+4,T+6,\ldots \} \notin {\mathcal {T}}(f)\). From (U4) of an ultrafilter, it follows that

$$\begin{aligned} {\mathbb {N}} {\setminus } \{\tau +2,\tau +4,\tau +6,\ldots \} \in {\mathcal {T}}(f). \end{aligned}$$
(6)

By Lemma 6, \(\{\tau +1,\tau +3,\tau +5,\ldots \} \notin {\mathcal {T}}(f)\). From (U4) of an ultrafilter, it follows that

$$\begin{aligned} {\mathbb {N}} {\setminus } \{\tau +1,\tau +3,\tau +5,\ldots \} \in {\mathcal {T}}(f). \end{aligned}$$
(7)

By (6), (7), and (U3) of an ultrafilter, it follows that

$$\begin{aligned} ({\mathbb {N}} {\setminus } \{\tau +2,\tau +4,\tau +6,\ldots \}) \cap ({\mathbb {N}} {\setminus } \{\tau +1,\tau +3,\tau +5,\ldots \})=\{1,2,\ldots ,\tau \} \in {\mathcal {T}}(f). \end{aligned}$$

\(\square \)

Proof of Theorem 4

Suppose that \(\{ t \} \notin {\mathcal {T}}(f)\) for all \(t \le \tau \). From (U4) of an ultrafilter, it follows that

$$\begin{aligned} {\mathbb {N}} {\setminus } \{t\} \in {\mathcal {T}}(f) \text{ for } \text{ all } t \le \tau . \end{aligned}$$
(8)

By Lemma 7,

$$\begin{aligned} \{1,2,\ldots ,\tau \} \in {\mathcal {T}}(f) . \end{aligned}$$
(9)

From (8), (9), and (U3) of an ultrafilter, it follows that

$$\begin{aligned} \{1,2,\ldots , \tau \} \cap \bigcap _{t\le T}{\mathbb {N}} {\setminus } \{t\} \in {\mathcal {T}}(f), \end{aligned}$$

contradicting (U1) of an ultrafilter. \(\square \)

1.4 Proof of Theorem 5

We can prove this theorem by following the same step as for Theorem 4.

Lemma 8

If a social welfare functionfsatisfies selfish domain and generalized multi-profile stationarity, then\(\{\tau +2,\tau +4,\tau +6,\ldots \} \notin {\mathcal {T}}(f)\)for some\(\tau \in {\mathbb {N}}\).

Proof

Let f be a social welfare function satisfying selfish domain and generalized multi-profile stationarity. Also, let x and y be two distinct elements of X and \(\succsim \) be an ordering on X such that \(x \succ y \). With selfish domain, we can consider a profile \({\mathbf {R}} \in {\mathcal {R}}^\infty \) by letting, for all \( t \in N\) and for all \({\mathbf{x}}, {\mathbf{y}} \in X^\infty \),

$$\begin{aligned} {\mathbf{x}} R_t {\mathbf{y}} \Leftrightarrow x_t \succsim y_t. \end{aligned}$$

By generalized multi-profile stationarity, there exists some \(T \in {\mathbb {N}}\) such that for all \({\mathbf{x}}, {\mathbf{y}} \in X^\infty \), if \(x_t = y_t\) for all \(t \in \{1,2,\ldots ,\tau \}\), then \({\mathbf{x }} f({\mathbf {R}}) {\mathbf{y}} \Leftrightarrow {\mathbf{x}}_{\ge 2} f({\mathbf {R}}_{\ge 2}) {\mathbf{y}}_{\ge 2}\). Now, take the following streams:

$$\begin{aligned}&{\mathbf{a}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau -1},x,y,x,y,x,\ldots ),\\&{\mathbf{b}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau },x,y,x,y,x,\ldots )=(y, {\mathbf {a}}),\\&{\mathbf{c}}=(({\mathbf{y}}_\mathrm{{con}})_{\le \tau },y,x,y,x,y,x,\ldots )=(y, {\mathbf {b}}). \end{aligned}$$

The rest of the proof is the same as in Lemma 5. \(\square \)

The following result can be proven in a similar way to the proof of Lemma 8.

Lemma 9

If a social welfare functionfsatisfies selfish domain and\(\tau \)-quasi-multi-profile stationarity, then\(\{\tau +1,\tau +3,\tau +5,\ldots \} \notin {\mathcal {T}}(f)\)for some\(\tau \in {\mathbb {N}}\).

Note that \(\tau \) in Lemma 9 may be different from that in Lemma 8.

Lemma 10

If a social welfare functionfsatisfies selfish domain, weak Pareto, independence of irrelevant alternatives, and generalized multi-profile stationarity, then\(\{1,2,\ldots ,\tau \} \in {\mathcal {T}}(f)\)for some\(\tau \in {\mathbb {N}}\).

Proof

Let f be a social welfare function satisfying selfish domain, weak Pareto, independence of irrelevant alternatives, and generalized multi-profile stationarity. Then the family \({\mathcal {T}}(f)\) of decisive sets forms an ultrafilter on \({\mathbb {N}}\).

By Lemma 8, \(\{\tau +2,\tau +4,\tau +6,\ldots \} \notin {\mathcal {T}}(f)\) for some \(\tau \in {\mathbb {N}}\). Then it follows that \({\mathbb {N}} {\setminus } \{\tau +2,\tau +4,\tau +6,\ldots \} \in {\mathcal {T}}(f)\). By Lemma 9, \(\{\tau '+1,\tau '+3,\tau '+5,\ldots \} \notin {\mathcal {T}}(f)\) for some \(\tau ' \in {\mathbb {N}}\). Thus, it follows that \({\mathbb {N}} {\setminus } \{\tau '+1,\tau '+3,\tau '+5,\ldots \} \in {\mathcal {T}}(f)\). Let

$$\begin{aligned} \tau ^* = \max \{ \tau ,\tau '\}. \end{aligned}$$

Note that

$$\begin{aligned} {\mathbb {N}} {\setminus } \{\tau +2,\tau +4,\tau +6,\ldots \} \subseteq {\mathbb {N}} {\setminus } \{\tau ^*+2,\tau ^*+4,\tau ^*+6,\ldots \};\\ {\mathbb {N}} {\setminus } \{\tau '+1,\tau '+3,\tau '+5,\ldots \} \subseteq {\mathbb {N}} {\setminus } \{\tau ^*+1,\tau ^*+3,\tau ^*+5,\ldots \}. \end{aligned}$$

By (U2), we have

$$\begin{aligned} {\mathbb {N}} {\setminus } \{\tau ^*+2,\tau ^*+4,\tau ^*+6,\ldots \} \in {\mathcal {T}}(f);\\ {\mathbb {N}} {\setminus } \{\tau ^*+1,\tau ^*+3,\tau ^*+5,\ldots \} \in {\mathcal {T}}(f). \end{aligned}$$

From (U3), it follows that

$$\begin{aligned} ({\mathbb {N}} {\setminus } \{\tau ^*+2,\tau ^*+4,\tau ^*+6,\ldots \}) \cap ({\mathbb {N}} {\setminus } \{\tau ^*+1,\tau ^*+3,\tau ^*+5,\ldots \})=\{1,2,\ldots ,\tau ^* \} \in {\mathcal {T}}(f). \end{aligned}$$

\(\square \)

The rest of the proof is the same as for Theorem 4.

1.5 Proof of Theorem 6

Proof

It suffices to show that \(f^*_{{\mathcal {U}}}\) satisfies Pareto indifference and cofinite-multi-profile stationarity. To show Pareto indifference, suppose that \({\mathbf{x}}I(R_t) {\mathbf{y}}\) for all \(t \in N\). Since \(N \in {\mathcal {U}}\), \(\{ t \in {\mathbb {N}}: {\mathbf{x}}R_t {\mathbf{y}} \} \in {\mathcal {U}}\) and \(\{ t \in {\mathbb {N}}: {\mathbf{y}}R_t {\mathbf{x}} \} \in {\mathcal {U}}\). Then we have \({\mathbf{x}}I(f({\mathbf{R}})) {\mathbf{y}}\).

Now, we show that cofinite-multi-profile stationarity is satisfied. Suppose that there exists T such that \(|T^\mathrm{{c}}| <\infty \), \(1 \in T\), and \(x_t = y_t\) for all \(t \in T\). Since each individual is selfish, \({\mathbf{x}}I(R_t) {\mathbf{y}}\) for all \(t \in T\). We can show that T is an element of \({\mathcal {U}}\). If T is not, then \(T^\mathrm{{c}}\) is an element because \({\mathcal {U}}\) is an ultrafilter. However, \(T^\mathrm{{c}}\) is finite. Then a singleton must be an element of \({\mathcal {U}}\). For any \({\mathbf{R}}\in {\mathcal {R}}^{\infty }_S\), \(\{ t \in {\mathbb {N}}: {\mathbf{x}}I(R_t) {\mathbf{y}} \} \in {\mathcal {U}}\) and thus, \(\mathbf{x}I(f({\mathbf{R}})) {\mathbf{y}}\).

Let us consider the ranking between \({\mathbf{x}}_{\ge 2}\) and \(\mathbf{y}_{\ge 2}\) under \({\mathbf{R}}_{\ge 2}\). Let \({\mathbf{R}}'={\mathbf{R}}_{\ge 2}\), \({\mathbf{x}}'={\mathbf{x}}_{\ge 2}\) and \({\mathbf{y}}'={\mathbf{y}}_{\ge 2}\). Because of the existence of T, there exists S such that \(|S^\mathrm{{c}}|=|T^\mathrm{{c}}| <\infty \) and \(x'_t = y'_t\) for all \(t \in S\). Because of our domain restriction, \({\mathbf{x}}'I(R'_t) {\mathbf{y}}'\) for all \(t \in S\). We have \({\mathbf{x}}' I(f({\mathbf{R}}')) {\mathbf{y}}'\) and thus, \({\mathbf{x}}_{\ge 2}I(f({\mathbf{R}}_{\ge 2})) {\mathbf{y}}_{\ge 2}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cato, S. Quasi-stationary social welfare functions. Theory Decis 89, 85–106 (2020). https://doi.org/10.1007/s11238-020-09746-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-020-09746-4

Keywords

Navigation