Theory and Decision

, Volume 84, Issue 1, pp 61–82 | Cite as

Risk attitudes in axiomatic decision theory: a conceptual perspective

  • Jean BaccelliEmail author


In this paper, I examine the decision-theoretic status of risk attitudes. I start by providing evidence showing that the risk attitude concepts do not play a major role in the axiomatic analysis of the classic models of decision-making under risk. This can be interpreted as reflecting the neutrality of these models between the possible risk attitudes. My central claim, however, is that such neutrality needs to be qualified and the axiomatic relevance of risk attitudes needs to be re-evaluated accordingly. Specifically, I highlight the importance of the conditional variation and the strengthening of risk attitudes, and I explain why they establish the axiomatic significance of the risk attitude concepts. I also present several questions for future research regarding the strengthening of risk attitudes.


Risk aversion Conditional certainty equivalent Allais paradox Non-expected utility Rank-dependent utility Cautious expected utility 



For helpful comments or discussions, I am thankful to two reviewers, Mohammed Abdellaoui, Richard Bradley, Michèle Cohen, Mikaël Cozic, Eric Danan, David Dillenberger, Louis Eeckhoudt, Raphaël Giraud, Philippe Mongin, Pietro Ortoleva, and Fanyin Zheng. All errors and omissions are mine. Research for this paper was funded by the Ecole Normale Supérieure-Ulm, the Université Cergy-Pontoise, and the Wagemann Foundation.


  1. Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’école américaine. Econometrica, 21(4), 503–546.CrossRefGoogle Scholar
  2. Bommier, A., Chassagnon, A., & Le Grand, F. (2012). Comparative risk aversion: A formal approach with applications to saving behavior. Journal of Economic Theory, 147(4), 1614–1641.CrossRefGoogle Scholar
  3. Camerer, C. (1992). Recent tests of generalizations of expected utility theory. In W. Edwards (Ed.), Utility Theories: Measurements and Applications (pp. 207–251). New York: Springer.CrossRefGoogle Scholar
  4. Camerer, C. (1995). Individual decision-making. In J. Kagel, A. Roth, & J. Hey (Eds.), The handbook of experimental economics (Vol. II, pp. 587–703). Princeton: Princeton University Press.Google Scholar
  5. Cerreia-Vioglio, S., Dillenberger, D., & Ortoleva, P. (2015). Cautious expected utility and the certainty effect. Econometrica, 83(2), 693–728.CrossRefGoogle Scholar
  6. Cerreia-Vioglio, S., Maccheroni, F., & Marinacci, M. (2016). Stochastic dominance analysis without the independence axiom. Management Science, 63(4), 1097–1109.CrossRefGoogle Scholar
  7. Chateauneuf, A. (1999). Comonotonicity axioms and rank-dependent expected utility theory for arbitrary consequences. Journal of Mathematical Economics, 32(1), 21–45.CrossRefGoogle Scholar
  8. Chateauneuf, A., & Cohen, M. (1994). Risk seeking with diminishing marginal utility in a non-expected utility model. Journal of Risk and Uncertainty, 9(1), 77–91.CrossRefGoogle Scholar
  9. Chateauneuf, A., Cohen, M., & Meilijson, I. (1997). New Tools to better model behavior under risk and uncertainty: An overview. Finance, 18(1), 25–46.Google Scholar
  10. Chateauneuf, A., Cohen, M., & Meilijson, I. (2005). More pessimism than greediness: A characterization of monotone risk aversion in the rank-dependent expected utility model. Economic Theory, 25(3), 649–667.CrossRefGoogle Scholar
  11. Chateauneuf, A., & Lakhnati, G. (2007). From sure to strong diversification. Economic Theory, 32(3), 511–522.CrossRefGoogle Scholar
  12. Chew, S. H. (1989). Axiomatic utility theories with the betweenness property. Annals of Operations Research, 19(1), 273–298.CrossRefGoogle Scholar
  13. Chew, S. H., & Epstein, L. (1989). A unifying approach to axiomatic non-expected utility theories. Journal of Economic Theory, 49(2), 207–240.CrossRefGoogle Scholar
  14. Chew, S. H., Epstein, L., & Wakker, P. (1993). A unifying approach to axiomatic non-expected utility theories: Correction and comment. Journal of Economic Theory, 59(1), 183–188.CrossRefGoogle Scholar
  15. Chew, S. H., Karni, E., & Safra, Z. (1987). Risk aversion in the theory of expected utility with rank dependent probabilities. Journal of Economic Theory, 42(2), 370–381.CrossRefGoogle Scholar
  16. Chew, S. H., & Mao, M. H. (1995). A Schur concave characterization of risk aversion for non-expected utility preferences. Journal of Economic Theory, 67(2), 402–435.CrossRefGoogle Scholar
  17. Cohen, M. (1995). Risk-aversion concepts in expected- and non-expected-utility models. The Geneva Papers on Risk and Insurance Theory, 20(1), 73–91.CrossRefGoogle Scholar
  18. Cohen, M., & Meilijson, I. (2014). Preference for safety under the Choquet model. In search of a characterization. Economic Theory, 55(3), 619–642.CrossRefGoogle Scholar
  19. Dean, M., & Ortoleva, P. (2017). Allais, Ellsberg, and preferences for hedging. Theoretical Economics, 12(1), 377–424.CrossRefGoogle Scholar
  20. Debreu, G. (1964). Continuity properties of Paretian utility. International Economic Review, 5(3), 285–293.CrossRefGoogle Scholar
  21. Dekel, E. (1986). An axiomatic characterization of preferences under uncertainty: Weakening the independence axiom. Journal of Economic Theory, 40(2), 304–318.CrossRefGoogle Scholar
  22. Dillenberger, D., & Segal, U. (2015). Recursive ambiguity and Machina’s examples. International Economic Review, 56(1), 55–61.CrossRefGoogle Scholar
  23. Fishburn, P. (1970). Utility theory for decision making. New York: Wiley.CrossRefGoogle Scholar
  24. Fishburn, P. (1982). Nontransitive measurable utility. Journal of Mathematical Psychology, 26(1), 31–67.CrossRefGoogle Scholar
  25. Friedman, M., & Savage, L. (1948). The utility analysis of choices involving risk. The Journal of Political Economy, 56(4), 279–304.CrossRefGoogle Scholar
  26. Gul, F. (1991). A theory of disappointment aversion. Econometrica, 59(3), 667–686.CrossRefGoogle Scholar
  27. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.CrossRefGoogle Scholar
  28. Krantz, D., Luce, R., Suppes, P., & Tversky, A. (1971). Foundations of measurement, volume I: Additive and polynomial representations. New York: Academic Press.Google Scholar
  29. Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of rational choice under uncertainty. The Economic Journal, 92(368), 805–824.CrossRefGoogle Scholar
  30. Machina, M. (1982). Expected utility analysis without the independence axiom. Econometrica, 50(2), 277–323.CrossRefGoogle Scholar
  31. Machina, M. (1983). Generalized expected utility analysis and the nature of observed violations of the independence axiom. In B. Stigum & F. Wenstop (Eds.), Foundations of utility and risk theory with applications (pp. 263–293). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  32. Marshall, A. (1890). The principles of economics. London: Macmillan and Co., Ltd.Google Scholar
  33. Marshall, A., Olkin, I., & Arnold, B. (2010). Inequalities: Theory of majorization and its applications. New York: Springer.Google Scholar
  34. Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior & Organization, 3(4), 323–343.CrossRefGoogle Scholar
  35. Rothschild, M., & Stiglitz, J. (1970). Increasing risk: I. A definition. Journal of Economic Theory, 2(3), 225–243.CrossRefGoogle Scholar
  36. Ryan, M. (2006). Risk aversion in RDEU. Journal of Mathematical Economics, 42(6), 675–697.CrossRefGoogle Scholar
  37. Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57(3), 571–587.CrossRefGoogle Scholar
  38. Segal, U. (1987). Some remarks on Quiggin’s anticipated utility. Journal of Economic Behavior & Organization, 8(1), 145–154.CrossRefGoogle Scholar
  39. Segal, U. (1990). Two-stage lotteries without the reduction axiom. Econometrica, 58(2), 349–377.CrossRefGoogle Scholar
  40. Segal, U., & Spivak, A. (1990). First order versus second order risk aversion. Journal of Economic Theory, 51(1), 111–125.CrossRefGoogle Scholar
  41. Seidl, C. (2013). The St. Petersburg Paradox at 300. Journal of Risk and Uncertainty, 46(3), 1–18.CrossRefGoogle Scholar
  42. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.CrossRefGoogle Scholar
  43. von Neumann, J., & Morgenstern, O. (1947). The theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  44. Yaari, M. (1969). Some remarks on measures of risk aversion and on their uses. Journal of Economic Theory, 1(3), 315–329.CrossRefGoogle Scholar
  45. Yaari, M. (1987). The dual theory of choice under risk. Econometrica, 55(1), 95–115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyMunichGermany

Personalised recommendations