On the characterization of weighted simple games

Abstract

This paper has a twofold scope. The first one is to clarify and put in evidence the isomorphic character of two theories developed in quite different fields: on one side, threshold logic, on the other side, simple games. One of the main purposes in both theories is to determine when a simple game is representable as a weighted game, which allows a very compact and easily comprehensible representation. Deep results were found in threshold logic in the sixties and seventies for this problem. However, game theory has taken the lead and some new results have been obtained for the problem in the past two decades. The second and main goal of this paper is to provide some new results on this problem and propose several open questions and conjectures for future research. The results we obtain depend on two significant parameters of the game: the number of types of equivalent players and the number of types of shift-minimal winning coalitions.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    The minimal winning coalitions are given by \(\{A,C\}\), \(\{A,D\}\), \(\{B,C\}\), and \(\{B,D\}\), see Sect. 2 for the definitions.

  2. 2.

    Using the notation from Sect. 3, \(\langle \{A,C\},\{B,D\}\,| \,\{A,B\},\{C,D\}\rangle \) is a trading transform, which certifies non-weightedness.

  3. 3.

    There is no connection to the efficient computation of power indices. In general, generating functions are just a theoretical tool from enumerative combinatorics in order to compute exact formulas for recurrence relations.

References

  1. Anthony, M., & Holden, S. (1994). Quantifying generalization in linearly weighted neural networks. Complex Systems, 8, 91–114.

    Google Scholar 

  2. Bean, D., Friedman, J., & Parker, C. (2008). Simple majority achievable hierarchies. Theory and Decision, 65, 285–302.

    Article  Google Scholar 

  3. Beimel, A., Tassa, T., & Weinreb, E. (2008). Characterizing ideal weighted threshold secret sharing. SIAM Journal on Discrete Mathematics, 22, 360–397.

    Article  Google Scholar 

  4. Beimel, A., & Weinreb, E. (2006). Monotone circuits for monotone weighted threshold families. Information Processing Letters, 97, 12–18.

    Article  Google Scholar 

  5. Bohossian, V., & Bruck, J. (2003). Algebraic techniques for constructing minimal weights threshold functions. SIAM Journal on Discrete Mathematics, 16, 114–126.

    Article  Google Scholar 

  6. Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155.

    Article  Google Scholar 

  7. Chvátal, V. (1983). Linear Programming. New York: W.H. Freeman.

    Google Scholar 

  8. Chow, C. (1961). Boolean functions realizable with single threshold devices. In Proceedings of the Institute of Radio Engineers, Vol. 49 (pp. 370–371).

  9. Dedekind, R. (1897). Über Zerlegungen von Zahlen durch ihre größten gemeinsammen Teiler. Gesammelte Werke, 1, 103–148.

    Google Scholar 

  10. de Keijzer, B., Klos, T., & Zhang, Y. (2014). Finding optimal solutions for voting game design problems. Journal of Artificial Intelligence, 50, 105–140.

    Google Scholar 

  11. Dubey, P., & Shapley, L. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4, 99–131.

    Article  Google Scholar 

  12. Einy, E., & Lehrer, E. (1989). Regular simple games. International Journal of Game Theory, 18, 195–207.

    Article  Google Scholar 

  13. Elgot, C. (1961). Truth functions realizable by single threshold organs. In AIEE Conference Paper 60-1311 (October), revised November 1960; paper presented at IEEE Symposium on Switching Circuit Theory and Logical Design.

  14. Freixas, J., & Kurz, S. (2013). The golden number and Fibonacci sequences in the design of voting systems. European Journal of Operational Research, 226, 246–257.

    Article  Google Scholar 

  15. Freixas, J., & Kurz, S. (2014). Enumerations of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum. Annals of Operations Research, 222, 317–339.

    Article  Google Scholar 

  16. Freixas, J., & Kurz, S. (2014). On minimum integer representations of weighted games. Mathematical Social Sciences, 67, 9–22.

    Article  Google Scholar 

  17. Freixas, J., & Molinero, X. (2009). Simple games and weighted games: A theoretical and computational viewpoint. Discrete Applied Mathematics, 157, 1496–1508.

    Article  Google Scholar 

  18. Freixas, J., & Molinero, X. (2010). Weighted games without a unique minimal representation in integers. Optimization Methods and Software, 25, 203–215.

    Article  Google Scholar 

  19. Freixas, J., Molinero, X., & Roura, S. (2012). Complete voting systems with two types of voters: Weightedness and counting. Annals of Operations Research, 193, 273–289.

    Article  Google Scholar 

  20. Freixas, J., & Pons, M. (2010). Hierarchies achievable in simple games. Theory and Decision, 68, 393–404.

    Article  Google Scholar 

  21. Freixas, J., & Puente, M. A. (1998). Complete games with minimum. Annals of Operations Research, 84, 97–109.

    Article  Google Scholar 

  22. Freixas, J., & Puente, M. A. (2008). Dimension of complete simple games with minimum. European Journal of Operational Research, 188, 555–568.

    Article  Google Scholar 

  23. Freixas, J., & Zwicker, W. (2003). Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare, 21, 399–431.

    Article  Google Scholar 

  24. Friedman, J., McGrath, L., & Parker, C. (2006). Achievable hierarchies in voting games. Theory and Decision, 61, 305–318.

    Article  Google Scholar 

  25. Gabelman, I. (1961). The functional behavior of majority (threshold) elements, Ph.D. dissertation, Electrical Engineering Department, Syracuse University.

  26. Golomb, S. (1959). On the classification of Boolean functions. IRE Transactions on Circuit Theory, 6, 176–186.

    Article  Google Scholar 

  27. Gvozdeva, T., & Slinko, A. (2011). Weighted and roughly weighted simple games. Mathematical Social Sciences, 61, 20–30.

    Article  Google Scholar 

  28. Hammer, P., & Holzman, R. (1992). Approximations of pseudoboolean functions; applications to game theory. ZOR Methods and Models of Operations Research, 36, 3–21.

    Article  Google Scholar 

  29. Hammer, P., Ibaraki, T., & Peled, U. (1981). Threshold numbers and threshold completions. Annals of Discrete Mathematics, 11, 125–145.

    Google Scholar 

  30. Hammer, P., Kogan, A., & Rothblum, U. (2000). Evaluation, strength and relevance of Boolean functions. SIAM Journal on Discrete Mathematics, 13, 302–312.

    Article  Google Scholar 

  31. Herranz, J. (2011). Any 2-asummable bipartite function is weighted threshold. Discrete Applied Mathematics, 159, 1079–1084.

    Article  Google Scholar 

  32. Houy, N., & Zwicker, W. (2014). The geometry of voting power: Weighted voting and hyper-ellipsoids. Games and Economic Behavior, 84, 7–16.

    Article  Google Scholar 

  33. Hu, S. (1965). Threshold Logic. Berkeley: University of California Press.

    Google Scholar 

  34. Isbell, J. (1956). A class of majority games. Quarterly Journal of Mathematics Oxford Series, 7, 183–187.

    Article  Google Scholar 

  35. Isbell, J. (1958). A class of simple games. Duke Mathematics Journal, 25, 423–439.

    Article  Google Scholar 

  36. Kartak, V. M., Kurz, S., Ripatti, A. V., & Scheithauer, G. (2015). Minimal proper non-IRUP instances of the one-dimensional cutting stock problem. Discrete Applied Mathematics, 187, 120–129.

    Article  Google Scholar 

  37. Kilgour, D. (1983). A formal analysis of the amending formula of Canada’s Constitution Act. Canadian Journal of Political Science, 16, 771–777.

    Article  Google Scholar 

  38. Kurz, S. (2012). On minimum sum representations for weighted voting games. Annals of Operations Research, 196, 361–369.

    Article  Google Scholar 

  39. Kurz, S., Molinero, X., & Olsen, M. (2016). On the construction of high-dimensional simple games. In Proceedings of the 22nd European Conference on Artificial Intelligence (pp. 1–13).

  40. Kurz, S., & Napel, S. (2016). Dimension of the Lisbon voting rules in the EU Council: A challenge and new world record. Optimization Letters, 10, 1245–1256.

    Article  Google Scholar 

  41. Kurz, S., & Tautenhahn, N. (2013). On Dedekind’s problem for complete simple games. International Journal of Game Theory, 42, 411–437.

    Article  Google Scholar 

  42. Littlestone, N. (1988). Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2, 285–318.

    Google Scholar 

  43. May, K. (1952). A set of independent, necessary and sufficient conditions for simple majority decision. Econometrica, 20, 680–684.

    Article  Google Scholar 

  44. Muroga, S. (1971). Threshold Logic and Its Applications. New York: Wiley-Interscience.

    Google Scholar 

  45. Muroga, S., Toda, I., & Kondo, M. (1962). Majority decision functions of up to six variables. Mathematics Computation, 16, 459–472.

    Article  Google Scholar 

  46. Muroga, S., Toda, I., & Takasu, S. (1961). Theory of majority decision elements. Journal Franklin Institute, 271, 376–418.

    Article  Google Scholar 

  47. Muroga, S., Tsuboi, T., & Baugh, R. (1970). Enumeration of threshold functions of eight variables. IEEE Transactions on Computers C-19(9), 818–825.

  48. Neumann, J. V., & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton: Princeton University Press.

    Google Scholar 

  49. Parberry, I. (1994). Circuit Complexity and Neural Networks. Cambridge: The M.I.T. Press.

    Google Scholar 

  50. Peled, U., & Simeone, B. (1985). Polynomial-time algorithms for regular set-covering and threshold synthesis. Discrete Applied Mathematics, 12, 57–69.

    Article  Google Scholar 

  51. Peleg, B. (1968). On weight of constant sum majority games. SIAM Journal of Applied Mathematics, 16, 527–532.

    Article  Google Scholar 

  52. Picton, P. (2000). Neural Networks (2nd ed.). Great Britain: The Macmillan Press, Ltd.

    Google Scholar 

  53. Ramamurthy, K. (1990). Coherent Structures and Simple Games. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  54. Reiterman, J., Rödl, V., Sinajova, E., & Tuma, M. (1985). Threshold hypergraphs. Discrete Applied Mathematics, 54, 193–200.

    Article  Google Scholar 

  55. Roychowdhury, V., Siu, K., & Orlitsky, A. (Eds.). (1994). Theoretical Advances in Neural Computation and Learning. Stanford, USA: Kluwer Academic Publishers.

    Google Scholar 

  56. Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics, 17, 1163–1170.

    Article  Google Scholar 

  57. Simmons, G. (1990). How to (really) share a secret. In Proceedings of the 8th Annual International Cryptology Conference on Advances in Cryptology. Springer, London (pp. 390–448).

  58. Siu, K., Roychowdhury, V., & Kailath, T. (1995). Discrete Neural Computation: A Theoretical Foundation. New Jersey: Prentice Hall.

    Google Scholar 

  59. Tassa, T. (2007). Hierarchical threshold secret sharing. Journal of Cryptology, 20, 237–264.

    Article  Google Scholar 

  60. Taylor, A. D., & Pacelli, A. (2008). Mathematics and Politics (2nd ed.). New York: Springer.

    Google Scholar 

  61. Taylor, A. D., & Zwicker, W. S. (1992). A characterization of weighted voting. Proceedings of the American Mathematical Society, 115, 1089–1094.

    Article  Google Scholar 

  62. Taylor, A. D., & Zwicker, W. S. (1995). Simple games and magic squares. Journal of Combinatorial Theory Series A, 71, 67–88.

    Article  Google Scholar 

  63. Taylor, A. D., & Zwicker, W. S. (1999). Simple Games: Desirability Relations, Trading, and Pseudoweightings. New Jersey: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by funds from the Spanish Ministry of Economy and Competitiveness (MINECO) and from the European Union (FEDER Funds) under Grant MTM2015-66818-P (MINECO/FEDER).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josep Freixas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freixas, J., Freixas, M. & Kurz, S. On the characterization of weighted simple games. Theory Decis 83, 469–498 (2017). https://doi.org/10.1007/s11238-017-9606-z

Download citation

Keywords

  • Simple games
  • Weighted games
  • Characterization of weighted games
  • Trade robustness
  • Invariant-trade robustness