Advertisement

Theory and Decision

, Volume 74, Issue 3, pp 447–461 | Cite as

Error and inference: an outsider stand on a frequentist philosophy

  • Christian P. RobertEmail author
Article

Abstract

This paper is an extended review of the book Error and Inference, edited by Deborah Mayo and Aris Spanos, about their frequentist and philosophical perspective on testing of hypothesis and on the criticisms of alternatives like the Bayesian approach.

Keywords

Frequentist paradigm Philosophy of statistics Evidence Testing of hypotheses Severe testing Bayesian inference Foundations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin M. (2010) Statistical inference: A Bayesian/likelihood approach. CRC Press, New YorkCrossRefGoogle Scholar
  2. Basu D. (1988) Statistical information and likelihood: A collection of criticalessays by Dr. D. Basu. Springer–Verlag, New YorkGoogle Scholar
  3. Beaumont M., Nielsen R., Robert C., Hey J., Gaggiotti O., Knowles L., Estoup A., Mahesh P., Coranders J., Hickerson M., Sisson S., Fagundes N., Chikhi L., Beerli P., Vitalis R., Cornuet J.-M., Huelsenbeck J., Foll M., Yang Z., Rousset F., Balding D., Excoffier L. (2010) In defense of model-based inference in phylogeography. Molecular Ecology 19(3): 436–446CrossRefGoogle Scholar
  4. Berger J. (1985) Statistical decision theory and Bayesian analysis (2nd ed.). Springer-Verlag, New YorkGoogle Scholar
  5. Berger J. (2003) Could Fisher, Jeffreys and Neyman have agreed on testing?. Statistical Science 18: 1–32CrossRefGoogle Scholar
  6. Berger J., Bernardo J. (1992) On the development of the reference prior method. In: Berger J., Bernardo J., Dawid A., Smith A. (eds) Bayesian statistics 4. Oxford University Press, London, pp 35–49Google Scholar
  7. Berger J., Ghosh J., Mukhopadhyay N. (2003) Approximations and consistency of Bayes factors as model dimension grows. Journal of Statistical Planning and Inference 112: 241–258CrossRefGoogle Scholar
  8. Berger J., Jefferys W. (1992) Sharpening Ockham’s razor on a Bayesian strop. American Statistics 80: 64–72Google Scholar
  9. Berger, J., & Wolpert, R. (1988). The likelihood principle (2nd ed.). IMS lecture notes—monograph series (Vol. 9). Hayward: IMS.Google Scholar
  10. Birnbaum A. (1962) On the foundations of statistical inference. Journal of the American Statistical Association 57: 269–306CrossRefGoogle Scholar
  11. Carnap R. (1952) Logical foundations of probability. University of Chicago Press, ChicagoGoogle Scholar
  12. DeGroot M. (1970) Optimal statistical decisions. McGraw-Hill, New YorkGoogle Scholar
  13. Gelman, A., & Shalizi, C. R. (2012). Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology. doi: 10.1111/j.2044-8317.2011.02037.x
  14. Gigerenzer G. (2002) Calculated risks: How to know when numbers deceive you. Simon and Schuster, New YorkGoogle Scholar
  15. Hartigan J. A. (1983) Bayes theory. Springer-Verlag, New YorkCrossRefGoogle Scholar
  16. Hwang J., Casella G., Robert C., Wells M., Farrel R. (1992) Estimation of accuracy in testing. Annals of Statistics 20: 490–509CrossRefGoogle Scholar
  17. Jeffreys H. (1939) Theory of probability (1st ed.). The Clarendon Press, OxfordGoogle Scholar
  18. Kass R., Raftery A. (1995) Bayes factors. Journal of the American Statistical Association 90: 773–795CrossRefGoogle Scholar
  19. Keynes J. M. (1921) A treatise on probability. Macmillan, LondonGoogle Scholar
  20. MacKay D. J. C. (2002) Information theory, inference & learning algorithms. Cambridge University Press, CambridgeGoogle Scholar
  21. Mayo, D., & Cox, D. (2006). Frequentist statistics as a theory of inductive inference. In J. Rojo (Ed.), Optimality: The second Erich L. Lehmann symposium (pp. 77–97). Lecture note—monograph series. Beachwood, OH: Institute of Mathematical Statistics.Google Scholar
  22. Mayo D. G. (1996) Error and the growth of experimental knowledge. University of Chicago Press, ChicagoGoogle Scholar
  23. Moreno E., Girón F., Casella G. (2010) Consistency of objective Bayes factors as the model dimension grows. Annals of Statistics 38: 1937–1952CrossRefGoogle Scholar
  24. O’Hagan A. (1995) Fractional Bayes factors for model comparisons. ournal of the Royal Statistical Society: Series B 57: 99–138Google Scholar
  25. Pérez J., Berger J. (2002) Expected-posterior prior distributions for model selection. Biometrika 89: 491–512CrossRefGoogle Scholar
  26. Robert C. (2007) The Bayesian choice. Springer-Verlag, New YorkGoogle Scholar
  27. Robert, C. (2010). An attempt at reading Keynes’ treatise on probability. International Statistical Review, 79, 1–15.Google Scholar
  28. Robert, C., Chopin, N., & Rousseau, J. (2009). Theory of probability revisited (with discussion). Statistical Science, 24(2), 141–172; 191–194.Google Scholar
  29. Robert C., Cornuet J.-M., Marin J.-M., Pillai N. (2011) Lack of confidence in ABC model choice. Proceedings of the National Academy of Sciences 108(37): 15112–15117CrossRefGoogle Scholar
  30. Schervish M. (1995) Theory of statistics. Springer-Verlag, New YorkCrossRefGoogle Scholar
  31. Spiegelhalter D. J., Best N. G., Carlin B. P., van der Linde A. (2002) Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society: Series B 64: 583–639CrossRefGoogle Scholar
  32. Templeton A. (2008) Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular Ecology 18(2): 319–331CrossRefGoogle Scholar
  33. Templeton A. (2010) Coherent and incoherent inference in phylogeography and human evolution. Proceedings of the National Academy of Sciences 107(14): 6376–6381CrossRefGoogle Scholar
  34. von Mises R. (1957) Probability, statistics, and truth. Dover, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Université Paris-Dauphine, CEREMADE, IUF, and CRESTParisFrance

Personalised recommendations