Skip to main content
Log in

Adsorptive Removal of \({{\text{UO}}}_{2}^{2+}\) Ions from Aqueous Solutions by Ni(II)/Fe(III)-Layered Double Hydroxides and its Magnetic Nanocomposites

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Comparative analysis of the sorption ability of the obtained carbonate forms of layered double hydroxides with different Ni(II)/Fe(III) ratio and their magnetic nanocomposites toward \({{\text{UO}}}_{2}^{2+}\) ions in aqueous solutions is performed. The synergistic effect of magnetic composite sorbents based on layered double hydroxides and magnetite on the removal uranyl ions in a wide pH range (3.5-9.5) is shown. Due to the high efficiency in combination with magnetic solid-phase separation, the obtained adsorption materials are promising for the purification of uranium-containing natural and wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. H. Dincer and S. Yuksel, Prog. Nucl. Energy, 165, 104911 (2023), https://doi.org/10.1016/j.pnucene.2023.104911.

    Article  CAS  Google Scholar 

  2. A. Neumann, L. Sorge, Ch. Hirschhausen, et al., Energy Res. Soc. Sci., 63, 101389 (2020), https://doi.org/10.1016/j.erss.2019.101389.

    Article  Google Scholar 

  3. Acceptance Criteria for Radioactive Waste for Disposal (NP-093-14), Nuc. Rad. Safety, 77, 59-82 (2015).

  4. The World Nuclear Waste Report 2019, (Council Directive 2011/70/EURATOM On Radioactive Waste And Spent Fuel), Brussels, February 05, 2020.

  5. N. G. Kobylinska, L. M. Puzyrnaya, and G. M. Pshinko, Theor. Exp. Chem., 58, No. 4, 221-239 (2022), https://doi.org/10.1007/s11237-022-09739-0.

    Article  CAS  Google Scholar 

  6. R. Selvakumar, G. Ramadoss, M. P. Menon, et al., J. Environ. Radioact., 192, 592-603 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. I. W. Donald, Waste Immobilization in Glass and Ceramic-Based Hosts: Radioactive, Toxic, and Hazardous Wastes, Wiley & Sons Ltd, UK (2010).

  8. K. L Nash and G. J. Lumetta (eds.), Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, Woodhead Publishing Limited, UK (2011).

    Google Scholar 

  9. I. Grenthe, J. Drozdzyn’ski, and T. Fujino, The Chemistry of the Actinide and Transactinide Elements, Vol. 1, N. M. Edelstein, J. Fuger, and L. R. Morss (eds.), Springer, New-York (2006).

  10. S. M. Auerbach, K. A. Carrado, and P. K. Dutta (eds), Handbook of Layered Materials, Marcel Dekker Inc., New York (2004).

    Google Scholar 

  11. I. T. Sherman (ed.) Layered Double Hydroxides (LDHs): Synthesis, Characterization and Applications, Nova Science Publishers, New-York (2015).

    Google Scholar 

  12. H. Zhang, B. Xia, P. Wang, et al., J. Alloys Compd., 819, 153053 (2020), https://doi.org/10.1016/J.JALLCOM.2019.153053.

    Article  CAS  Google Scholar 

  13. J. W. Boclair and P. S. Braterman, Chem. Mater., 11, 298-302 (1999), https://doi.org/10.1021/cm980523u.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Lu, B. Jiang, L. Fang, et al., Chemosphere, 152, 415-422 (2016), https://doi.org/10.1016/j.chemosphere.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  15. F. B. D. Saiah, B. L. Su, and N. Bettahar, J. Hazard. Mater., 165, 206-217 (2009), https://doi.org/10.1016/j.jhazmat.2008.09.125.

    Article  CAS  PubMed  Google Scholar 

  16. F. Song and X. Hu, Nat. Commun., 5, 4477 (2014), https://doi.org/10.1038/ncomms5477.

    Article  CAS  PubMed  Google Scholar 

  17. J. B. Liang, R. Ma, N. Iyi, et al., Chem. Mater., 22, 371-378 (2010), https://doi.org/10.1021/cm902787u.

    Article  CAS  Google Scholar 

  18. Ch. Chen, B. Xiao, Zh. Qin, et al., CS Appl. Mater. Interfaces, 15, No. 34, 40538-40548 (2023), https://doi.org/10.1021/acsami.3c07790.

    Article  CAS  Google Scholar 

  19. X. Li, X. Hao, Zh. Wang, et al., J. Power Sources, 347, 193-200 (2017).

    Article  CAS  Google Scholar 

  20. M. Gong, Y. Li, H. Wang, et al., J. Am. Chem. Soc., 135, 8452-8455 (2013), https://doi.org/10.1021/ja4027715.

    Article  CAS  PubMed  Google Scholar 

  21. L. Yu, J. F. Yang, B. Y. Guan, et al., Angew. Chem. Int. Ed., 57, 172-176 (2018), https://doi.org/10.1002/anie.201710877.

    Article  CAS  Google Scholar 

  22. W. Wang, Y. Liu, J. Li, et al., J. Mater. Chem. A., 6, No. 29, 14299-14306 (2018), https://doi.org/10.1039/C8TA05295F.

    Article  CAS  Google Scholar 

  23. D. H. Youn, Y. B. Park, J. Y. Kim, et al., J. Power Sources, 294, 437-443 (2015).

    Article  CAS  Google Scholar 

  24. D. Tang, J. Liu, X. Wu, et al., ACS Appl. Mater. Interfaces, 6, 7918-7925 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. X. Dai, W. Yi, C. Yin, et al., Appl. Clay Sci., 229, 106664 (2022), https://doi.org/10.1016/J.CLAY.2022.106664.

    Article  CAS  Google Scholar 

  26. U. Jeong, X. Teng, Y. Wang, et al., Advanced Materials, 19, No. 1, 33-60 (2007), https://doi.org/10.1002/adma.200600674.

    Article  CAS  Google Scholar 

  27. W. Wang, Y. Liu, J. Li, et al., Mater. Chem. A., 6, 14299-14306 (2018), https://doi.org/10.1039/C8TA05295F.

    Article  CAS  Google Scholar 

  28. H. Rohwer, N. Rheeder, and E. Hosten, Anal. Chim. Acta., 341, Nos. 2-3, 263-268 (1997), https://doi.org/10.1016/S0003-2670(96)00559-4.

    Article  CAS  Google Scholar 

  29. A. Patterson, Phys. Rev., 56, No. 10, 978-982 (1939), https://doi.org/10.1103/PhysRev.56.978.

    Article  CAS  Google Scholar 

  30. C. H. Giles, T. H. MacEwan, S. N. Nakhwa, and D. Smith, J. Chem. Soc., 3973-3993 (1960).

  31. S. Lagergren, Handlingar., 21, 1-39 (1898).

    Google Scholar 

  32. Y. S. Ho and G. McKay, Process Biochem., 34, No. 5, 451-46 (1999), https://doi.org/10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kobylinska.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 5, pp. 320-330, September-October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubetska, T.S., Demchenko, V.Y. & Kobylinska, N.G. Adsorptive Removal of \({{\text{UO}}}_{2}^{2+}\) Ions from Aqueous Solutions by Ni(II)/Fe(III)-Layered Double Hydroxides and its Magnetic Nanocomposites. Theor Exp Chem 59, 364–376 (2023). https://doi.org/10.1007/s11237-024-09796-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-024-09796-7

Keywords

Navigation